Suppr超能文献

通过化学修饰分析酵母液泡ATP酶亚基a(Vph1p)C端疏水区跨膜片段的膜拓扑结构。

Analysis of the membrane topology of transmembrane segments in the C-terminal hydrophobic domain of the yeast vacuolar ATPase subunit a (Vph1p) by chemical modification.

作者信息

Wang Yanru, Toei Masashi, Forgac Michael

机构信息

Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.

出版信息

J Biol Chem. 2008 Jul 25;283(30):20696-702. doi: 10.1074/jbc.M803258200. Epub 2008 May 28.

Abstract

The integral V(0) domain of the vacuolar (H(+))-ATPases (V-ATPases) provides the pathway by which protons are transported across the membrane. Subunit a is a 100-kDa integral subunit of V(0) that plays an essential role in proton translocation. To better define the membrane topology of subunit a, unique cysteine residues were introduced into a Cys-less form of the yeast subunit a (Vph1p) and the accessibility of these cysteine residues to modification by the membrane permeant reagent N-ethylmaleimide (NEM) and the membrane impermeant reagent polyethyleneglycol maleimide (PEG-mal) in the presence and absence of the protein denaturant SDS was assessed. Thirty Vph1p mutants containing unique cysteine residues were constructed and analyzed. Cysteines introduced between residues 670 and 710 and between 807 and 840 were modified by PEG-mal in the absence of SDS, indicating a cytoplasmic orientation. Cysteines introduced between residues 602 and 620 and between residues 744 and 761 were modified by NEM but not PEG-mal in the absence of SDS, suggesting a lumenal orientation. Finally, cysteines introduced at residues 638, 645, 648, 723, 726, 734, and at nine positions between residue 766 and 804 were modified by NEM and PEG-mal only in the presence of SDS, consistent with their presence within the membrane or at a protein-protein interface. The results support an eight transmembrane helix (TM) model of subunit a in which the C terminus is located on the cytoplasmic side of the membrane and provide information on the location of hydrophilic loops separating TM6, 7, and 8.

摘要

液泡型(H⁺)-ATP酶(V-ATP酶)的V(0)积分结构域提供了质子跨膜运输的途径。亚基a是V(0)的一个100 kDa的整合亚基,在质子转运中起关键作用。为了更好地确定亚基a的膜拓扑结构,将独特的半胱氨酸残基引入酵母亚基a(Vph1p)的无半胱氨酸形式中,并评估这些半胱氨酸残基在有和没有蛋白质变性剂SDS的情况下,被膜渗透试剂N-乙基马来酰亚胺(NEM)和膜非渗透试剂聚乙二醇马来酰亚胺(PEG-mal)修饰的可及性。构建并分析了30个含有独特半胱氨酸残基的Vph1p突变体。在不存在SDS的情况下,引入670至710位残基之间以及807至840位残基之间的半胱氨酸被PEG-mal修饰,表明其为胞质方向。在不存在SDS的情况下,引入602至620位残基之间以及744至761位残基之间的半胱氨酸被NEM修饰,但未被PEG-mal修饰,提示其为腔面方向。最后,在638、645、648、723、726、734位残基以及766至804位残基之间的九个位置引入的半胱氨酸仅在存在SDS的情况下被NEM和PEG-mal修饰,这与其存在于膜内或蛋白质-蛋白质界面一致。这些结果支持亚基a的八跨膜螺旋(TM)模型,其中C末端位于膜的胞质侧,并提供了关于分隔TM6、7和8的亲水性环位置的信息。

相似文献

4
Transmembrane topography of the 100-kDa a subunit (Vph1p) of the yeast vacuolar proton-translocating ATPase.
J Biol Chem. 1999 May 21;274(21):14655-61. doi: 10.1074/jbc.274.21.14655.

引用本文的文献

1
The Toxoplasma plant-like vacuolar compartment (PLVAC).刚地弓形虫类植物液泡隔室(PLVAC)。
J Eukaryot Microbiol. 2022 Nov;69(6):e12951. doi: 10.1111/jeu.12951. Epub 2022 Oct 27.
2
Regulation and function of V-ATPases in physiology and disease.V-ATPases 在生理和疾病中的调节和功能。
Biochim Biophys Acta Biomembr. 2020 Dec 1;1862(12):183341. doi: 10.1016/j.bbamem.2020.183341. Epub 2020 May 16.
6
A Shared Mechanism for the Folding of Voltage-Gated K Channels.电压门控钾通道折叠的共享机制。
Biochemistry. 2019 Mar 26;58(12):1660-1671. doi: 10.1021/acs.biochem.9b00068. Epub 2019 Mar 7.

本文引用的文献

3
Mechanisms of pathogen entry through the endosomal compartments.病原体通过内体区室进入的机制。
Nat Rev Mol Cell Biol. 2006 Jul;7(7):495-504. doi: 10.1038/nrm1959. Epub 2006 Jun 14.
9
Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae.来自平肠球菌的V型钠-ATP酶转子的结构。
Science. 2005 Apr 29;308(5722):654-9. doi: 10.1126/science.1110064. Epub 2005 Mar 31.
10
Renal vacuolar H+-ATPase.肾液泡H⁺-ATP酶
Physiol Rev. 2004 Oct;84(4):1263-314. doi: 10.1152/physrev.00045.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验