Detloff Megan Ryan, Fisher Lesley C, McGaughy Violetta, Longbrake Erin E, Popovich Phillip G, Basso D Michele
Center for Brain and Spinal Cord Repair, Neuroscience Graduate Studies Program, The Ohio State University 43210, USA.
Exp Neurol. 2008 Aug;212(2):337-47. doi: 10.1016/j.expneurol.2008.04.009. Epub 2008 Apr 20.
Spinal cord injury (SCI) impairs sensory systems causing chronic allodynia. Mechanisms underlying neuropathic pain have been more extensively studied following peripheral nerve injury (PNI) than after central trauma. Microglial activation, pro-inflammatory cytokine production and activation of p38 MAP kinase pathways may induce at-level allodynia following PNI. We investigated whether midthoracic SCI elicits similar behavioral and cellular responses below the level of injury (lumbar spinal cord; L5). Importantly, we show that anatomical connections between L5 and supraspinal centers remain intact after moderate SCI allowing direct comparison to a well-established model of peripheral nerve injury. We found that SCI elicits below-level allodynia of similar magnitude to at-level pain caused by a peripheral nerve injury. Moreover, the presence of robust microglial activation in L5 cord predicted allodynia in 86% of rats. Also increased phosphorylation of p38 MAP kinase occurred in the L5 dorsal horn of allodynic rats. For below-level allodynia after SCI, TNF-alpha and IL-1beta increased in the L5 dorsal horn by 7 dpo and returned to baseline by 35 dpo. Interestingly, IL-6 remains at normal levels early after SCI and increases at chronic time points. Increased levels of pro-inflammatory cytokines also occurred in the thalamus after SCI-induced allodynia. These data suggest that remote microglial activation is pivotal in the development and maintenance of below-level allodynia after SCI. Fractalkine, a known activator of microglia, and astrocytes were not primary modulators of below-level pain. Although the mechanisms of remote microglial activation are unknown, this response may be a viable target for limiting or preventing neuropathic pain after SCI in humans.
脊髓损伤(SCI)会损害感觉系统,导致慢性痛觉过敏。与中枢创伤后相比,周围神经损伤(PNI)后对神经性疼痛的潜在机制进行了更广泛的研究。小胶质细胞激活、促炎细胞因子产生以及p38丝裂原活化蛋白激酶(MAP)途径的激活可能会在PNI后诱发损伤平面的痛觉过敏。我们研究了胸段中部SCI是否会在损伤平面以下(腰段脊髓;L5)引发类似的行为和细胞反应。重要的是,我们发现中度SCI后L5与脊髓上中枢之间的解剖学连接保持完整,这使得能够直接与成熟的周围神经损伤模型进行比较。我们发现SCI会在损伤平面以下引发与周围神经损伤导致的损伤平面疼痛程度相似的痛觉过敏。此外,L5脊髓中强烈的小胶质细胞激活可预测86%的大鼠出现痛觉过敏。在痛觉过敏大鼠的L5背角中也出现了p38 MAP激酶磷酸化增加。对于SCI后的损伤平面以下痛觉过敏,L5背角中的肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)在损伤后7天增加,并在损伤后35天恢复到基线水平。有趣的是,IL-6在SCI后早期保持在正常水平,并在慢性时间点增加。SCI诱导痛觉过敏后,丘脑也出现促炎细胞因子水平升高。这些数据表明,远程小胶质细胞激活在SCI后损伤平面以下痛觉过敏的发生和维持中起关键作用。趋化因子,一种已知的小胶质细胞激活剂,以及星形胶质细胞不是损伤平面以下疼痛的主要调节因子。尽管远程小胶质细胞激活的机制尚不清楚,但这种反应可能是限制或预防人类SCI后神经性疼痛的一个可行靶点。