Friedrichs Gernot, Fikri Mustapha, Guo Yuanqing, Temps Friedrich
Institut für Physikalische Chemie, Olshausenstr. 40, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany.
J Phys Chem A. 2008 Jun 26;112(25):5636-46. doi: 10.1021/jp8012128. Epub 2008 May 31.
Room-temperature rate constants for the pressure-dependent reactions SiH2 + ethene, propene, and t-butene have been determined at total pressures of 3.3 mbar < or = p < or = 300 mbar with Ar as buffer gas. SiH2 was detected by means of time-resolved cavity ringdown spectroscopy (CRDS), and the deconvolution of ringdown, kinetics, and laser bandwidth effect was accomplished with the extended simultaneous kinetics and ringdown model (eSKaR). In this way, pseudofirst-order rate constants could be extracted from nonexponential ringdown profiles. The recombination reactions, including the reaction SiH2 + i-butene, have been modeled based on the simplified statistical adiabatic channel model (SACM) and weak collision energy-grained master equation (ME) simulations. The influence of an interfering fast isomerization channel was investigated based on the Rice, Ramsperger, Kassel, Marcus theory (RRKM) and was found to be only important for the C2H4 reaction. Using ab initio energies (G3) and structures (MP2/6-311G(d,p)) as input parameters for the kinetic models, a consistent description of the pressure and temperature dependences of all four reactions was possible. In the temperature range 295 K < or = T < or = 600 K, the extrapolated limiting high-pressure rate constants, k(infinity)(C2H4)/(cm(3) x mol(-1) x s(-1)) = 1.9 x 10(14) (T/K)(-0.065), k(infinity)(C3H6)/(cm(3) x mol(-1) x s(-1)) = 1.3 x 10(14) (T/K)(0.075), k(infinity)(i-C4H8) = 1.8 x 10(14) cm(3) x mol(-1) x s(-1), and k(infinity)(t-C4H8)/(cm(3) x mol(-1) x s(-1)) = 4.6 x 10(13) (T/K)(0.21), are close to the collision number and are more or less temperature independent. In the case of ethene, probably due to the approximate treatment of rotational effects and/or the interfering isomerization process, the applied model slightly underestimates the falloff and thus yields too high extrapolated rate constants at p < 10 mbar.
已在3.3毫巴≤p≤300毫巴的总压力下,以氩气作为缓冲气体,测定了与压力相关的反应SiH2与乙烯、丙烯和叔丁烯的室温速率常数。通过时间分辨腔衰荡光谱法(CRDS)检测SiH2,并利用扩展同步动力学和衰荡模型(eSKaR)完成了衰荡、动力学和激光带宽效应的去卷积。通过这种方式,可以从非指数衰荡曲线中提取伪一级速率常数。包括反应SiH2 + 异丁烯在内的复合反应已基于简化统计绝热通道模型(SACM)和弱碰撞能量粒度主方程(ME)模拟进行了建模。基于赖斯、拉姆施佩格、卡塞尔、马库斯理论(RRKM)研究了干扰快速异构化通道的影响,发现其仅对C2H4反应重要。使用从头算能量(G3)和结构(MP2/6 - 311G(d,p))作为动力学模型的输入参数,能够对所有四个反应的压力和温度依赖性进行一致描述。在温度范围为295 K≤T≤600 K时,外推的极限高压速率常数为:k(∞)(C2H4)/(cm³·mol⁻¹·s⁻¹) = 1.9×10¹⁴ (T/K)⁻⁰.⁰⁶⁵,k(∞)(C3H6)/(cm³·mol⁻¹·s⁻¹) = 1.3×10¹⁴ (T/K)⁰.⁰⁷⁵,k(∞)(i - C4H8) = 1.8×10¹⁴ cm³·mol⁻¹·s⁻¹,以及k(∞)(t - C4H8)/(cm³·mol⁻¹·s⁻¹) = 4.6×10¹³ (T/K)⁰.²¹,这些值接近碰撞数且或多或少与温度无关。对于乙烯,可能由于对旋转效应的近似处理和/或干扰异构化过程,所应用的模型略微低估了衰减,因此在p < 10毫巴时产生了过高的外推速率常数。