Suppr超能文献

标准和广义的麦克唐纳-克雷特曼检验:一个通过比较不同类别的DNA位点来检测选择作用的网站。

Standard and generalized McDonald-Kreitman test: a website to detect selection by comparing different classes of DNA sites.

作者信息

Egea Raquel, Casillas Sònia, Barbadilla Antonio

机构信息

Genomics, Bioinformatics and Evolution Group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.

出版信息

Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W157-62. doi: 10.1093/nar/gkn337. Epub 2008 May 30.

Abstract

The McDonald and Kreitman test (MKT) is one of the most powerful and extensively used tests to detect the signature of natural selection at the molecular level. Here, we present the standard and generalized MKT website, a novel website that allows performing MKTs not only for synonymous and nonsynonymous changes, as the test was initially described, but also for other classes of regions and/or several loci. The website has three different interfaces: (i) the standard MKT, where users can analyze several types of sites in a coding region, (ii) the advanced MKT, where users can compare two closely linked regions in the genome that can be either coding or noncoding, and (iii) the multi-locus MKT, where users can analyze many separate loci in a single multi-locus test. The website has already been used to show that selection efficiency is positively correlated with effective population size in the Drosophila genus and it has been applied to include estimates of selection in DPDB. This website is a timely resource, which will presumably be widely used by researchers in the field and will contribute to enlarge the catalogue of cases of adaptive evolution. It is available at http://mkt.uab.es.

摘要

麦克唐纳和克雷特曼检验(MKT)是检测分子水平上自然选择特征最强大且应用最广泛的检验方法之一。在此,我们展示标准和广义MKT网站,这是一个新颖的网站,它不仅能像最初描述的那样对同义突变和非同义突变进行MKT检验,还能对其他类型的区域和/或多个基因座进行检验。该网站有三个不同的界面:(i)标准MKT界面,用户可在编码区域分析多种类型的位点;(ii)高级MKT界面,用户能比较基因组中两个紧密连锁的区域,这两个区域可以是编码区或非编码区;(iii)多位点MKT界面,用户能在单个多位点检验中分析多个独立的基因座。该网站已被用于表明果蝇属中的选择效率与有效种群大小呈正相关,并且已被应用于在DPDB中纳入选择估计。这个网站是一个及时的资源,想必会被该领域的研究人员广泛使用,并将有助于扩大适应性进化案例的目录。它可在http://mkt.uab.es获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cb4/2447769/8c739c5fcc13/gkn337f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验