Suppr超能文献

估算果蝇中适应性蛋白质进化的全基因组速率。

Estimating the genomewide rate of adaptive protein evolution in Drosophila.

作者信息

Welch John J

机构信息

Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.

出版信息

Genetics. 2006 Jun;173(2):821-37. doi: 10.1534/genetics.106.056911. Epub 2006 Apr 2.

Abstract

When polymorphism and divergence data are available for multiple loci, extended forms of the McDonald-Kreitman test can be used to estimate the average proportion of the amino acid divergence due to adaptive evolution--a statistic denoted alpha. But such tests are subject to many biases. Most serious is the possibility that high estimates of alpha reflect demographic changes rather than adaptive substitution. Testing for between-locus variation in alpha is one possible way of distinguishing between demography and selection. However, such tests have yielded contradictory results, and their efficacy is unclear. Estimates of alpha from the same model organisms have also varied widely. This study clarifies the reasons for these discrepancies, identifying several method-specific biases in widely used estimators and assessing the power of the methods. As part of this process, a new maximum-likelihood estimator is introduced. This estimator is applied to a newly compiled data set of 115 genes from Drosophila simulans, each with each orthologs from D. melanogaster and D. yakuba. In this way, it is estimated that alpha approximately 0.4+/-0.1, a value that does not vary substantially between different loci or over different periods of divergence. The implications of these results are discussed.

摘要

当多个基因座的多态性和分化数据可用时,麦克唐纳-克赖特曼检验的扩展形式可用于估计由于适应性进化导致的氨基酸分化的平均比例——一个记为α的统计量。但此类检验存在许多偏差。最严重的是,α的高估计值可能反映的是种群统计学变化而非适应性替代。检测α在基因座间的变异是区分种群统计学和选择的一种可能方法。然而,此类检验得出了相互矛盾的结果,其效力尚不清楚。来自相同模式生物的α估计值也有很大差异。本研究阐明了这些差异的原因,识别了广泛使用的估计方法中几种特定于方法的偏差,并评估了这些方法的效力。作为这一过程的一部分,引入了一种新的最大似然估计方法。该估计方法应用于一个新编制的数据集,该数据集包含来自拟果蝇的115个基因,每个基因都有来自黑腹果蝇和雅库布果蝇的直系同源基因。通过这种方式,估计α约为0.4±0.1,该值在不同基因座之间或不同分化时期没有显著变化。讨论了这些结果的意义。

相似文献

1
Estimating the genomewide rate of adaptive protein evolution in Drosophila.
Genetics. 2006 Jun;173(2):821-37. doi: 10.1534/genetics.106.056911. Epub 2006 Apr 2.
2
Adaptive protein evolution in Drosophila.
Nature. 2002 Feb 28;415(6875):1022-4. doi: 10.1038/4151022a.
3
The genomic rate of adaptive amino acid substitution in Drosophila.
Mol Biol Evol. 2004 Jul;21(7):1350-60. doi: 10.1093/molbev/msh134. Epub 2004 Mar 24.
4
The evolution of small insertions and deletions in the coding genes of Drosophila melanogaster.
Mol Biol Evol. 2013 Dec;30(12):2699-708. doi: 10.1093/molbev/mst167. Epub 2013 Sep 26.
5
Adaptive protein evolution of X-linked and autosomal genes in Drosophila: implications for faster-X hypotheses.
Mol Biol Evol. 2007 Nov;24(11):2566-72. doi: 10.1093/molbev/msm199. Epub 2007 Sep 19.
7
Molecular population genetics of male accessory gland proteins in the Drosophila simulans complex.
Genetics. 2004 Jun;167(2):725-35. doi: 10.1534/genetics.103.020883.
8
Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila.
Science. 2005 Jul 29;309(5735):764-7. doi: 10.1126/science.1112699.
9
Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila.
Mol Biol Evol. 2016 Feb;33(2):442-55. doi: 10.1093/molbev/msv236. Epub 2015 Oct 22.

引用本文的文献

2
Estimating the proportion of beneficial mutations that are not adaptive in mammals.
PLoS Genet. 2024 Dec 26;20(12):e1011536. doi: 10.1371/journal.pgen.1011536. eCollection 2024 Dec.
3
Ongoing Positive Selection Drives the Evolution of SARS-CoV-2 Genomes.
Genomics Proteomics Bioinformatics. 2022 Dec;20(6):1214-1223. doi: 10.1016/j.gpb.2022.05.009. Epub 2022 Jun 26.
4
Two decades of suspect evidence for adaptive molecular evolution-negative selection confounding positive-selection signals.
Natl Sci Rev. 2021 Dec 3;9(5):nwab217. doi: 10.1093/nsr/nwab217. eCollection 2022 May.
9
Transcriptomic basis and evolution of the ant nurse-larval social interactome.
PLoS Genet. 2019 May 20;15(5):e1008156. doi: 10.1371/journal.pgen.1008156. eCollection 2019 May.

本文引用的文献

1
Molecular clocks: when times are a-changin'.
Trends Genet. 2006 Feb;22(2):79-83. doi: 10.1016/j.tig.2005.11.006. Epub 2005 Dec 13.
2
Simultaneous inference of selection and population growth from patterns of variation in the human genome.
Proc Natl Acad Sci U S A. 2005 May 31;102(22):7882-7. doi: 10.1073/pnas.0502300102. Epub 2005 May 19.
3
A composite-likelihood approach for detecting directional selection from DNA sequence data.
Genetics. 2005 Jul;170(3):1411-21. doi: 10.1534/genetics.104.035097. Epub 2005 May 6.
4
Patterns of selection on synonymous and nonsynonymous variants in Drosophila miranda.
Genetics. 2005 Mar;169(3):1495-507. doi: 10.1534/genetics.104.033068. Epub 2004 Nov 15.
5
Molecular population genetics of male accessory gland proteins in the Drosophila simulans complex.
Genetics. 2004 Jun;167(2):725-35. doi: 10.1534/genetics.103.020883.
6
The genomic rate of adaptive amino acid substitution in Drosophila.
Mol Biol Evol. 2004 Jul;21(7):1350-60. doi: 10.1093/molbev/msh134. Epub 2004 Mar 24.
8
Effect of breeding structure on population genetic parameters in Drosophila.
Genetics. 2004 Feb;166(2):779-88. doi: 10.1534/genetics.166.2.779.
10
Estimating the distribution of fitness effects from DNA sequence data: implications for the molecular clock.
Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10335-40. doi: 10.1073/pnas.1833064100. Epub 2003 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验