Sherman D, Kotake S, Ishibe N, Copeland R A
Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637.
Proc Natl Acad Sci U S A. 1991 May 15;88(10):4265-9. doi: 10.1073/pnas.88.10.4265.
Second-derivative absorption spectra are reported for a variety of oxidation and ligation states of bovine cytochrome c oxidase (ferrocytochrome-c:oxygen oxidoreductase, EC 1.9.3.1). The high resolving power of the second-derivative method allows us to assign the individual electronic transitions of cytochrome alpha and cytochrome alpha 3 in many of these states. In the fully reduced enzyme, one observes a single electronic transition at 444 nm, corresponding to the Soret transition for both ferrous cytochrome alpha and ferrous cytochrome alpha 3. When the cytochrome alpha 3 site is occupied by an exogenous ligand (CN or CO), one observes two absorption bands assignable to the ferrous cytochrome alpha chromophore, one at ca, 443 nm and the other at ca, 450 nm. The appearance of the 450-nm band is dependent only on ligand occupancy at the cytochrome alpha 3 site and not on the oxidation state of the cytochrome alpha 3 iron. These results can be interpreted either in terms of a heterogeneous mixture of two ferrous cytochrome alpha conformers in the cytochrome alpha 3-ligated enzyme or in terms of a reduction in the effective molecular symmetry of the ferrous cytochrome alpha site that results in a lifting of the degeneracy of the lowest unoccupied molecular orbital associated with the Soret pi,pi* transition of cytochrome alpha. In either case, the present data indicate that ferrous cytochrome alpha can adopt two distinct conformations. One possible structural difference between these two states could be related to differences in the strength of hydrogen bonding between the ferrous cytochrome alpha formyl oxygen and a proton donor from an unidentified amino acid side chain of the enzyme. The implications of such modulation of hydrogen-bond strength are discussed in terms of possible mechanisms of proton translocation and electron transfer in the enzyme.
本文报道了牛细胞色素c氧化酶(亚铁细胞色素c:氧氧化还原酶,EC 1.9.3.1)多种氧化和连接状态下的二阶导数吸收光谱。二阶导数方法的高分辨能力使我们能够在许多这些状态下确定细胞色素α和细胞色素α3的各个电子跃迁。在完全还原的酶中,在444nm处观察到单一电子跃迁,对应于亚铁细胞色素α和亚铁细胞色素α3的Soret跃迁。当细胞色素α3位点被外源性配体(CN或CO)占据时,观察到两个可归因于亚铁细胞色素α发色团的吸收带,一个在约443nm处,另一个在约450nm处。450nm吸收带的出现仅取决于细胞色素α3位点的配体占据情况,而不取决于细胞色素α3铁的氧化态。这些结果可以用细胞色素α3连接酶中亚铁细胞色素α两种构象的异质混合物来解释,也可以用亚铁细胞色素α位点有效分子对称性的降低来解释,这导致与细胞色素α的Soret π,π*跃迁相关的最低未占据分子轨道简并性的解除。无论哪种情况,目前的数据表明亚铁细胞色素α可以采用两种不同的构象。这两种状态之间一种可能的结构差异可能与亚铁细胞色素α甲酰基氧与酶中未鉴定氨基酸侧链的质子供体之间氢键强度的差异有关。本文从该酶中质子转运和电子转移的可能机制方面讨论了这种氢键强度调节的意义。