Suppr超能文献

Thymine glycols and pyrimidine dimers in brain DNA during post-ischemic reperfusion.

作者信息

O'Neil B J, Krause G S, White B C

机构信息

Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201.

出版信息

Resuscitation. 1991 Feb;21(1):41-55. doi: 10.1016/0300-9572(91)90077-c.

Abstract

Free-radical reactions, known to occur in the reperfused brain, damage DNA in vitro. We therefore examined the hypothesis that thymine glycols and thymine dimers, which are known to block transcription and are formed by free radical mechanisms, are formed in brain DNA during reoxygenation following ischemia. Such biochemical lesions could account for the failure of protein synthesis that occurs following an ischemic insult. Large dogs were anesthetized, instrumented, and divided into four groups: (1) non-ischemic controls; (2) 20-min cardiac arrest without resuscitation; (3) 20-min cardiac arrest, resuscitation and 2 h reperfusion; and (4) 20-min cardiac arrest, resuscitation and 8 h reperfusion. Genomic DNA was isolated from the cerebral cortex. Thymine glycols were labeled by reduction with [3H]NaBH4. Pyrimidine dimers were determined by ELISA using antibody prepared against ultraviolet irradiated DNA. The data was evaluated by Kruskal-Wallis ANOVA with alpha = 0.05. The rabbit antibodies detected the thymine dimer content in 10 pg UV irradiated DNA but did not react with normal DNA. Borohydride labeling qualitatively detected thymine glycols generated by treatment of DNA with osmium tetroxide. There was no difference between the DNAs from the experimental groups in the content of thymine glycols or pyrimidine dimers (P = 0.608 and P = 0.219, respectively). We conclude that significant quantities of thymine glycols and thymine dimers are not formed in brain DNA during post-ischemic reperfusion. Therefore, the inhibition of brain protein synthesis during reperfusion, observed by other investigators, is unlikely to be caused by interruption of transcription by these species.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验