Suppr超能文献

斑马鱼胚胎作为耐缺氧的动态模型。

The zebrafish embryo as a dynamic model of anoxia tolerance.

作者信息

Mendelsohn Bryce A, Kassebaum Bethany L, Gitlin Jonathan D

机构信息

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Dev Dyn. 2008 Jul;237(7):1780-8. doi: 10.1002/dvdy.21581.

Abstract

Developing organisms depend upon a delicate balance in the supply and demand of energy to adapt to variable oxygen availability, although the essential mechanisms determining such adaptation remain elusive. In this study, we examine reversible anoxic arrest and dynamic bioenergetic transitions during zebrafish development. Our data reveal that the duration of anoxic viability corresponds to the developmental stage and anaerobic metabolic rate. Diverse chemical inhibitors of mitochondrial oxidative phosphorylation induce a similar arrest in normoxic embryos, suggesting a pathway responsive to perturbations in aerobic energy production rather than molecular oxygen. Consistent with this concept, arrest is accompanied by rapid activation of the energy-sensing AMP-activated protein kinase pathway, demonstrating a potential link between the sensing of energy status and adaptation to oxygen availability. These observations permit mechanistic insight into energy homeostasis during development that now enable genetic and small molecule screens in this vertebrate model of anoxia tolerance.

摘要

发育中的生物体依赖于能量供需的微妙平衡来适应变化的氧气供应,尽管决定这种适应的基本机制仍然难以捉摸。在本研究中,我们研究了斑马鱼发育过程中的可逆性缺氧停滞和动态生物能量转换。我们的数据表明,缺氧存活时间与发育阶段和无氧代谢率相对应。线粒体氧化磷酸化的多种化学抑制剂在常氧胚胎中诱导类似的停滞,这表明存在一条对有氧能量产生扰动作出反应的途径,而不是对分子氧作出反应。与此概念一致的是,停滞伴随着能量感应AMP激活蛋白激酶途径的快速激活,这表明能量状态感应与氧气供应适应之间存在潜在联系。这些观察结果有助于从机制上深入了解发育过程中的能量稳态,现在可以在这个耐缺氧脊椎动物模型中进行基因和小分子筛选。

相似文献

1
The zebrafish embryo as a dynamic model of anoxia tolerance.
Dev Dyn. 2008 Jul;237(7):1780-8. doi: 10.1002/dvdy.21581.
4
Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius).
Am J Physiol Regul Integr Comp Physiol. 2008 Dec;295(6):R1803-14. doi: 10.1152/ajpregu.90590.2008. Epub 2008 Oct 15.
5
Bioenergetic profiling of zebrafish embryonic development.
PLoS One. 2011;6(9):e25652. doi: 10.1371/journal.pone.0025652. Epub 2011 Sep 29.
7
Deletion of the gene encoding an inhibitor of hypoxia-inducible factors increases hypoxia tolerance in zebrafish.
J Biol Chem. 2018 Oct 5;293(40):15370-15380. doi: 10.1074/jbc.RA118.003004. Epub 2018 Aug 20.
8
AMPK-mTOR Signaling and Cellular Adaptations in Hypoxia.
Int J Mol Sci. 2021 Sep 9;22(18):9765. doi: 10.3390/ijms22189765.
9
Oxygen sensing and signal transduction in metabolic defense against hypoxia: lessons from vertebrate facultative anaerobes.
Comp Biochem Physiol A Physiol. 1997 Sep;118(1):23-9. doi: 10.1016/s0300-9629(96)00372-6.
10
Small noncoding RNA expression during extreme anoxia tolerance of annual killifish () embryos.
Physiol Genomics. 2017 Sep 1;49(9):505-518. doi: 10.1152/physiolgenomics.00016.2017. Epub 2017 Aug 11.

引用本文的文献

1
Evaluating TnP as a Potential Therapeutic Agent for Retinopathy in Zebrafish Models.
Pharmaceuticals (Basel). 2025 Jun 4;18(6):840. doi: 10.3390/ph18060840.
2
N-Myc downstream regulated gene 1b is a regulator of cell adhesion during early muscle development.
bioRxiv. 2025 May 13:2025.05.08.652902. doi: 10.1101/2025.05.08.652902.
3
A mitochondrial redox switch licenses the onset of morphogenesis in animals.
bioRxiv. 2024 Oct 29:2024.10.28.620733. doi: 10.1101/2024.10.28.620733.
7
Deficiency in Neuroserpin Exacerbates CoCl Induced Hypoxic Injury in the Zebrafish Model by Increased Oxidative Stress.
Front Pharmacol. 2021 Mar 2;12:632662. doi: 10.3389/fphar.2021.632662. eCollection 2021.
10
Hypoxia and connectivity in the developing vertebrate nervous system.
Dis Model Mech. 2018 Dec 12;11(12):dmm037127. doi: 10.1242/dmm.037127.

本文引用的文献

2
Life with oxygen.
Science. 2007 Oct 5;318(5847):62-4. doi: 10.1126/science.1147949.
3
Early developmental pathology due to cytochrome c oxidase deficiency is revealed by a new zebrafish model.
J Biol Chem. 2007 Nov 30;282(48):34839-49. doi: 10.1074/jbc.M703528200. Epub 2007 Aug 30.
4
AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy.
Nat Rev Mol Cell Biol. 2007 Oct;8(10):774-85. doi: 10.1038/nrm2249.
6
Energy-dependent regulation of cell structure by AMP-activated protein kinase.
Nature. 2007 Jun 21;447(7147):1017-20. doi: 10.1038/nature05828. Epub 2007 May 7.
7
Resveratrol stimulates AMP kinase activity in neurons.
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7217-22. doi: 10.1073/pnas.0610068104. Epub 2007 Apr 16.
8
TOR and aging: less is more.
Cell Metab. 2007 Apr;5(4):233-5. doi: 10.1016/j.cmet.2007.03.005.
9
AMP-activated protein kinase mediates carotid body excitation by hypoxia.
J Biol Chem. 2007 Mar 16;282(11):8092-8. doi: 10.1074/jbc.M608742200. Epub 2006 Dec 19.
10
Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability.
Annu Rev Physiol. 2007;69:145-70. doi: 10.1146/annurev.physiol.69.031905.162529.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验