Mendelsohn Bryce A, Kassebaum Bethany L, Gitlin Jonathan D
Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Dev Dyn. 2008 Jul;237(7):1780-8. doi: 10.1002/dvdy.21581.
Developing organisms depend upon a delicate balance in the supply and demand of energy to adapt to variable oxygen availability, although the essential mechanisms determining such adaptation remain elusive. In this study, we examine reversible anoxic arrest and dynamic bioenergetic transitions during zebrafish development. Our data reveal that the duration of anoxic viability corresponds to the developmental stage and anaerobic metabolic rate. Diverse chemical inhibitors of mitochondrial oxidative phosphorylation induce a similar arrest in normoxic embryos, suggesting a pathway responsive to perturbations in aerobic energy production rather than molecular oxygen. Consistent with this concept, arrest is accompanied by rapid activation of the energy-sensing AMP-activated protein kinase pathway, demonstrating a potential link between the sensing of energy status and adaptation to oxygen availability. These observations permit mechanistic insight into energy homeostasis during development that now enable genetic and small molecule screens in this vertebrate model of anoxia tolerance.
发育中的生物体依赖于能量供需的微妙平衡来适应变化的氧气供应,尽管决定这种适应的基本机制仍然难以捉摸。在本研究中,我们研究了斑马鱼发育过程中的可逆性缺氧停滞和动态生物能量转换。我们的数据表明,缺氧存活时间与发育阶段和无氧代谢率相对应。线粒体氧化磷酸化的多种化学抑制剂在常氧胚胎中诱导类似的停滞,这表明存在一条对有氧能量产生扰动作出反应的途径,而不是对分子氧作出反应。与此概念一致的是,停滞伴随着能量感应AMP激活蛋白激酶途径的快速激活,这表明能量状态感应与氧气供应适应之间存在潜在联系。这些观察结果有助于从机制上深入了解发育过程中的能量稳态,现在可以在这个耐缺氧脊椎动物模型中进行基因和小分子筛选。