Ratnaparkhi Anuradha, Lawless George M, Schweizer Felix E, Golshani Peyman, Jackson George R
Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America.
PLoS One. 2008 Jun 4;3(6):e2334. doi: 10.1371/journal.pone.0002334.
ALS8 is caused by a dominant mutation in an evolutionarily conserved protein, VAPB (vesicle-associated membrane protein (VAMP)-associated membrane protein B)/ALS8). We have established a fly model of ALS8 using the corresponding mutation in Drosophila VAPB (dVAP33A) and examined the effects of this mutation on VAP function using genetic and morphological analyses. By simultaneously assessing the effects of VAP(wt) and VAP(P58S) on synaptic morphology and structure, we demonstrate that the phenotypes produced by neuronal expression of VAP(P58S) resemble VAP loss of function mutants and are opposite those of VAP overexpression, suggesting that VAP(P58S) may function as a dominant negative. This is brought about by aggregation of VAP(P58S) and recruitment of wild type VAP into these aggregates. Importantly, we also demonstrate that the ALS8 mutation in dVAP33A interferes with BMP signaling pathways at the neuromuscular junction, identifying a new mechanism underlying pathogenesis of ALS8. Furthermore, we show that mutant dVAP33A can serve as a powerful tool to identify genetic modifiers of VAPB. This new fly model of ALS, with its robust pathological phenotypes, should for the first time allow the power of unbiased screens in Drosophila to be applied to study of motor neuron diseases.
肌萎缩侧索硬化症8型(ALS8)是由一种进化上保守的蛋白质VAPB(囊泡相关膜蛋白(VAMP)相关膜蛋白B)/ALS8中的显性突变引起的。我们利用果蝇VAPB(dVAP33A)中的相应突变建立了ALS8的果蝇模型,并通过遗传学和形态学分析研究了该突变对VAP功能的影响。通过同时评估VAP(野生型)和VAP(P58S)对突触形态和结构的影响,我们证明VAP(P58S)在神经元中表达所产生的表型类似于VAP功能缺失突变体,与VAP过表达的表型相反,这表明VAP(P58S)可能作为一种显性负性蛋白发挥作用。这是由VAP(P58S)的聚集以及野生型VAP被招募到这些聚集体中导致的。重要的是,我们还证明dVAP33A中的ALS8突变会干扰神经肌肉接头处的骨形态发生蛋白(BMP)信号通路,从而确定了ALS8发病机制的一种新机制。此外,我们表明突变型dVAP33A可作为一种强大的工具来鉴定VAPB的遗传修饰因子。这种具有强大病理表型的新型ALS果蝇模型首次使果蝇中无偏向筛选的能力得以应用于运动神经元疾病的研究。