Suppr超能文献

一种赫布学习规则在对齐感觉表征过程中介导不对称可塑性。

A Hebbian learning rule mediates asymmetric plasticity in aligning sensory representations.

作者信息

Witten Ilana B, Knudsen Eric I, Sompolinsky Haim

机构信息

Neurobiology Department, Stanford University Medical Center, Stanford, CA 94305, USA.

出版信息

J Neurophysiol. 2008 Aug;100(2):1067-79. doi: 10.1152/jn.00013.2008. Epub 2008 Jun 4.

Abstract

In the brain, mutual spatial alignment across different sensory representations can be shaped and maintained through plasticity. Here, we use a Hebbian model to account for the synaptic plasticity that results from a displacement of the space representation for one input channel relative to that of another, when the synapses from both channels are equally plastic. Surprisingly, although the synaptic weights for the two channels obeyed the same Hebbian learning rule, the amount of plasticity exhibited by the respective channels was highly asymmetric and depended on the relative strength and width of the receptive fields (RFs): the channel with the weaker or broader RFs always exhibited most or all of the plasticity. A fundamental difference between our Hebbian model and most previous models is that in our model synaptic weights were normalized separately for each input channel, ensuring that the circuit would respond to both sensory inputs. The model produced three distinct regimes of plasticity dynamics (winner-take-all, mixed-shift, and no-shift), with the transition between the regimes depending on the size of the spatial displacement and the degree of correlation between the sensory channels. In agreement with experimental observations, plasticity was enhanced by the accumulation of incremental adaptive adjustments to a sequence of small displacements. These same principles would apply not only to the maintenance of spatial registry across input channels, but also to the experience-dependent emergence of aligned representations in developing circuits.

摘要

在大脑中,不同感觉表征之间的相互空间对齐可以通过可塑性来塑造和维持。在这里,我们使用一个赫布模型来解释当两个通道的突触具有同等可塑性时,一个输入通道的空间表征相对于另一个输入通道发生位移所导致的突触可塑性。令人惊讶的是,尽管两个通道的突触权重遵循相同的赫布学习规则,但各个通道所表现出的可塑性程度高度不对称,并且取决于感受野(RF)的相对强度和宽度:具有较弱或较宽RF的通道总是表现出大部分或全部的可塑性。我们的赫布模型与大多数先前模型之间的一个根本区别在于,在我们的模型中,每个输入通道的突触权重是分别归一化的,以确保电路能够对两种感觉输入做出反应。该模型产生了三种不同的可塑性动力学模式(胜者全得、混合偏移和无偏移),模式之间的转变取决于空间位移的大小和感觉通道之间的相关程度。与实验观察结果一致,对一系列小位移的增量自适应调整的积累增强了可塑性。这些相同的原理不仅适用于跨输入通道的空间对齐的维持,也适用于发育中的电路中依赖经验的对齐表征的出现。

相似文献

1
A Hebbian learning rule mediates asymmetric plasticity in aligning sensory representations.
J Neurophysiol. 2008 Aug;100(2):1067-79. doi: 10.1152/jn.00013.2008. Epub 2008 Jun 4.
2
Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity.
J Neurosci. 2003 May 1;23(9):3697-714. doi: 10.1523/JNEUROSCI.23-09-03697.2003.
3
Constraint on the number of synaptic inputs to a visual cortical neuron controls receptive field formation.
Neural Comput. 2009 Sep;21(9):2554-80. doi: 10.1162/neco.2009.04-08-752.
4
Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields.
J Neurosci. 2020 Dec 9;40(50):9634-9649. doi: 10.1523/JNEUROSCI.0276-20.2020. Epub 2020 Nov 9.
5
A Developmental Switch for Hebbian Plasticity.
PLoS Comput Biol. 2015 Jul 14;11(7):e1004386. doi: 10.1371/journal.pcbi.1004386. eCollection 2015 Jul.
6
Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
J Neurosci. 2016 Aug 24;36(34):8842-55. doi: 10.1523/JNEUROSCI.0552-16.2016.
7
Learning to discriminate through long-term changes of dynamical synaptic transmission.
Neural Comput. 2009 Dec;21(12):3408-28. doi: 10.1162/neco.2009.12-08-929.
8
Spike-timing-dependent Hebbian plasticity as temporal difference learning.
Neural Comput. 2001 Oct;13(10):2221-37. doi: 10.1162/089976601750541787.
9
Hebbian learning from higher-order correlations requires crosstalk minimization.
Biol Cybern. 2014 Aug;108(4):405-22. doi: 10.1007/s00422-014-0608-4. Epub 2014 May 27.
10
Does Hebbian synaptic plasticity explain learning-induced sensory plasticity in adult mammals?
J Physiol Paris. 1996;90(3-4):271-6. doi: 10.1016/s0928-4257(97)81437-4.

引用本文的文献

1
Spatial Dependence of Stimulus Competition in the Avian Nucleus Isthmi Pars Magnocellularis.
Brain Behav Evol. 2019;93(2-3):137-151. doi: 10.1159/000500192. Epub 2019 Aug 15.
2
New perspectives on the owl's map of auditory space.
Curr Opin Neurobiol. 2014 Feb;24(1):55-62. doi: 10.1016/j.conb.2013.08.008. Epub 2013 Sep 12.
3
A neural network model of ventriloquism effect and aftereffect.
PLoS One. 2012;7(8):e42503. doi: 10.1371/journal.pone.0042503. Epub 2012 Aug 3.
4
The representation of sound localization cues in the barn owl's inferior colliculus.
Front Neural Circuits. 2012 Jul 11;6:45. doi: 10.3389/fncir.2012.00045. eCollection 2012.
5
A computational study of multisensory maturation in the superior colliculus (SC).
Exp Brain Res. 2011 Sep;213(2-3):341-9. doi: 10.1007/s00221-011-2714-z. Epub 2011 May 10.
6
Perceptron learning rule derived from spike-frequency adaptation and spike-time-dependent plasticity.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4722-7. doi: 10.1073/pnas.0909394107. Epub 2010 Feb 18.
7
Multiplicative auditory spatial receptive fields created by a hierarchy of population codes.
PLoS One. 2009 Nov 24;4(11):e8015. doi: 10.1371/journal.pone.0008015.
8
Visual modulation of auditory responses in the owl inferior colliculus.
J Neurophysiol. 2009 Jun;101(6):2924-33. doi: 10.1152/jn.91313.2008. Epub 2009 Mar 25.

本文引用的文献

1
Rapid synaptic scaling induced by changes in postsynaptic firing.
Neuron. 2008 Mar 27;57(6):819-26. doi: 10.1016/j.neuron.2008.02.031.
2
Homeostatic regulation of AMPA receptor expression at single hippocampal synapses.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):775-80. doi: 10.1073/pnas.0706447105. Epub 2008 Jan 3.
3
Fundamental components of attention.
Annu Rev Neurosci. 2007;30:57-78. doi: 10.1146/annurev.neuro.30.051606.094256.
4
The interplay between homeostatic synaptic plasticity and functional dendritic compartments.
J Neurophysiol. 2006 Jul;96(1):276-83. doi: 10.1152/jn.00074.2006. Epub 2006 Mar 22.
5
Hunting increases adaptive auditory map plasticity in adult barn owls.
J Neurosci. 2005 Oct 19;25(42):9816-20. doi: 10.1523/JNEUROSCI.2533-05.2005.
6
Dynamic plasticity in coupled avian midbrain maps.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 1):061904. doi: 10.1103/PhysRevE.70.061904. Epub 2004 Dec 9.
7
Multiple sites of adaptive plasticity in the owl's auditory localization pathway.
J Neurosci. 2004 Aug 4;24(31):6853-61. doi: 10.1523/JNEUROSCI.0480-04.2004.
8
Attentional modulation of visual processing.
Annu Rev Neurosci. 2004;27:611-47. doi: 10.1146/annurev.neuro.26.041002.131039.
9
Adaptive plasticity in the auditory thalamus of juvenile barn owls.
J Neurosci. 2003 Feb 1;23(3):1059-65. doi: 10.1523/JNEUROSCI.23-03-01059.2003.
10
Information optimization in coupled audio-visual cortical maps.
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15894-7. doi: 10.1073/pnas.252472699. Epub 2002 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验