Suppr超能文献

上丘多感觉成熟的计算研究。

A computational study of multisensory maturation in the superior colliculus (SC).

机构信息

Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, Italy.

出版信息

Exp Brain Res. 2011 Sep;213(2-3):341-9. doi: 10.1007/s00221-011-2714-z. Epub 2011 May 10.

Abstract

Multisensory neurons in cat SC exhibit significant postnatal maturation. The first multisensory neurons to appear have large receptive fields (RFs) and cannot integrate information across sensory modalities. During the first several months of postnatal life RFs contract, responses become more robust and neurons develop the capacity for multisensory integration. Recent data suggest that these changes depend on both sensory experience and active inputs from association cortex. Here, we extend a computational model we developed (Cuppini et al. in Front Integr Neurosci 22: 4-6, 2010) using a limited set of biologically realistic assumptions to describe how this maturational process might take place. The model assumes that during early life, cortical-SC synapses are present but not active and that responses are driven by non-cortical inputs with very large RFs. Sensory experience is modeled by a "training phase" in which the network is repeatedly exposed to modality-specific and cross-modal stimuli at different locations. Cortical-SC synaptic weights are modified during this period as a result of Hebbian rules of potentiation and depression. The result is that RFs are reduced in size and neurons become capable of responding in adult-like fashion to modality-specific and cross-modal stimuli.

摘要

猫的初级视皮层(SC)中的多感觉神经元具有明显的出生后成熟过程。首先出现的多感觉神经元具有较大的感受野(RF),并且不能跨感觉模式整合信息。在出生后的头几个月中,RF 收缩,反应变得更加稳健,神经元发展出多感觉整合的能力。最近的数据表明,这些变化既取决于感觉经验,也取决于来自联合皮层的主动输入。在这里,我们扩展了我们之前开发的一个计算模型(Cuppini 等人,《前沿综合神经科学》22:4-6,2010),该模型使用了一组有限的具有生物学现实性的假设来描述这个成熟过程是如何发生的。该模型假设,在生命早期,皮层-皮层下突触存在但不活跃,反应由具有非常大 RF 的非皮层输入驱动。感觉经验通过“训练阶段”来模拟,在这个阶段,网络会反复暴露在不同位置的特定模态和跨模态刺激下。在此期间,根据增强和抑制的赫布规则,皮层-皮层下突触的权重会发生变化。结果是 RF 的大小减小,神经元能够以类似于成年的方式对特定模态和跨模态的刺激做出反应。

相似文献

1
A computational study of multisensory maturation in the superior colliculus (SC).
Exp Brain Res. 2011 Sep;213(2-3):341-9. doi: 10.1007/s00221-011-2714-z. Epub 2011 May 10.
2
Hebbian mechanisms help explain development of multisensory integration in the superior colliculus: a neural network model.
Biol Cybern. 2012 Dec;106(11-12):691-713. doi: 10.1007/s00422-012-0511-9. Epub 2012 Aug 4.
3
Representation and integration of multiple sensory inputs in primate superior colliculus.
J Neurophysiol. 1996 Aug;76(2):1246-66. doi: 10.1152/jn.1996.76.2.1246.
4
Sensory and multisensory responses in the newborn monkey superior colliculus.
J Neurosci. 2001 Nov 15;21(22):8886-94. doi: 10.1523/JNEUROSCI.21-22-08886.2001.
7
Development of multisensory neurons and multisensory integration in cat superior colliculus.
J Neurosci. 1997 Apr 1;17(7):2429-44. doi: 10.1523/JNEUROSCI.17-07-02429.1997.
8
Two cortical areas mediate multisensory integration in superior colliculus neurons.
J Neurophysiol. 2001 Feb;85(2):506-22. doi: 10.1152/jn.2001.85.2.506.
9
Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli.
J Neurophysiol. 2005 May;93(5):2575-86. doi: 10.1152/jn.00926.2004. Epub 2005 Jan 5.
10
Noise-rearing disrupts the maturation of multisensory integration.
Eur J Neurosci. 2014 Feb;39(4):602-13. doi: 10.1111/ejn.12423. Epub 2013 Nov 19.

引用本文的文献

1
Is Competition the Default Configuration of Cross-Sensory Interactions?
Eur J Neurosci. 2025 Aug;62(4):e70233. doi: 10.1111/ejn.70233.
2
The brain can develop conflicting multisensory principles to guide behavior.
Cereb Cortex. 2024 Jun 4;34(6). doi: 10.1093/cercor/bhae247.
5
Resolution of impaired multisensory processing in autism and the cost of switching sensory modality.
Commun Biol. 2022 Jun 30;5(1):601. doi: 10.1038/s42003-022-03519-1.
6
From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration.
Front Neurorobot. 2020 May 15;14:29. doi: 10.3389/fnbot.2020.00029. eCollection 2020.
7
Using superior colliculus principles of multisensory integration to reverse hemianopia.
Neuropsychologia. 2020 Apr;141:107413. doi: 10.1016/j.neuropsychologia.2020.107413. Epub 2020 Feb 27.
8
Cross-Modal Competition: The Default Computation for Multisensory Processing.
J Neurosci. 2019 Feb 20;39(8):1374-1385. doi: 10.1523/JNEUROSCI.1806-18.2018. Epub 2018 Dec 20.
9
Modified Origins of Cortical Projections to the Superior Colliculus in the Deaf: Dispersion of Auditory Efferents.
J Neurosci. 2018 Apr 18;38(16):4048-4058. doi: 10.1523/JNEUROSCI.2858-17.2018. Epub 2018 Apr 2.
10
Development of the Mechanisms Governing Midbrain Multisensory Integration.
J Neurosci. 2018 Apr 4;38(14):3453-3465. doi: 10.1523/JNEUROSCI.2631-17.2018. Epub 2018 Mar 1.

本文引用的文献

1
Semantic confusion regarding the development of multisensory integration: a practical solution.
Eur J Neurosci. 2010 May;31(10):1713-20. doi: 10.1111/j.1460-9568.2010.07206.x.
2
An emergent model of multisensory integration in superior colliculus neurons.
Front Integr Neurosci. 2010 Mar 22;4:6. doi: 10.3389/fnint.2010.00006. eCollection 2010.
3
Multisensory integration in the superior colliculus requires synergy among corticocollicular inputs.
J Neurosci. 2009 May 20;29(20):6580-92. doi: 10.1523/JNEUROSCI.0525-09.2009.
5
The neural basis of multisensory integration in the midbrain: its organization and maturation.
Hear Res. 2009 Dec;258(1-2):4-15. doi: 10.1016/j.heares.2009.03.012. Epub 2009 Apr 2.
6
A Hebbian learning rule mediates asymmetric plasticity in aligning sensory representations.
J Neurophysiol. 2008 Aug;100(2):1067-79. doi: 10.1152/jn.00013.2008. Epub 2008 Jun 4.
7
Maturation of multisensory integration in the superior colliculus: expression of nitric oxide synthase and neurofilament SMI-32.
Brain Res. 2008 Nov 25;1242:45-53. doi: 10.1016/j.brainres.2008.03.073. Epub 2008 Apr 9.
8
Multisensory integration: current issues from the perspective of the single neuron.
Nat Rev Neurosci. 2008 Apr;9(4):255-66. doi: 10.1038/nrn2331.
9
Early experience determines how the senses will interact.
J Neurophysiol. 2007 Jan;97(1):921-6. doi: 10.1152/jn.00497.2006. Epub 2006 Aug 16.
10
Neonatal cortical ablation disrupts multisensory development in superior colliculus.
J Neurophysiol. 2006 Mar;95(3):1380-96. doi: 10.1152/jn.00880.2005. Epub 2005 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验