Suppr超能文献

作为时间差分学习的尖峰时间依赖型赫布可塑性

Spike-timing-dependent Hebbian plasticity as temporal difference learning.

作者信息

Rao R P, Sejnowski T J

机构信息

Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195-2350, USA.

出版信息

Neural Comput. 2001 Oct;13(10):2221-37. doi: 10.1162/089976601750541787.

Abstract

A spike-timing-dependent Hebbian mechanism governs the plasticity of recurrent excitatory synapses in the neocortex: synapses that are activated a few milliseconds before a postsynaptic spike are potentiated, while those that are activated a few milliseconds after are depressed. We show that such a mechanism can implement a form of temporal difference learning for prediction of input sequences. Using a biophysical model of a cortical neuron, we show that a temporal difference rule used in conjunction with dendritic backpropagating action potentials reproduces the temporally asymmetric window of Hebbian plasticity observed physio-logically. Furthermore, the size and shape of the window vary with the distance of the synapse from the soma. Using a simple example, we show how a spike-timing-based temporal difference learning rule can allow a network of neocortical neurons to predict an input a few milliseconds before the input's expected arrival.

摘要

一种依赖于尖峰时间的赫布机制支配着新皮层中兴奋性突触的可塑性

在突触后尖峰前几毫秒被激活的突触会增强,而在突触后尖峰后几毫秒被激活的突触则会减弱。我们表明,这样一种机制可以实现一种用于预测输入序列的时间差学习形式。使用一个皮层神经元的生物物理模型,我们表明,与树突反向传播动作电位结合使用的时间差规则再现了生理上观察到的赫布可塑性的时间不对称窗口。此外,该窗口的大小和形状随突触与胞体的距离而变化。通过一个简单的例子,我们展示了基于尖峰时间的时间差学习规则如何允许新皮层神经元网络在输入预期到达前几毫秒预测该输入。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验