Shuvalov A L
Laboratoire de Mécanique Physique, Université Bordeaux 1, UMR CNRS 5469, F-33405 Talence Cedex, France.
J Acoust Soc Am. 2008 May;123(5):2484-7. doi: 10.1121/1.2890743.
For an arbitrary anisotropic half-space with continuous vertical variation of material properties, an explicit closed-form expression for the coefficient B of high-frequency dispersion of the Rayleigh velocity v(R)(omega) approximately v(R)(0)(1+B/omega) is derived. The result involves two matrices, one consisting of the surface-traction derivatives in velocity and the other of its Wentzel-Kramers-Brillouin coefficients, which are contracted with an amplitude vector of the Rayleigh wave in the reference homogeneous half-space. The "ingredients" are routinely defined through the fundamental elasticity matrix and its first derivative, both taken at v=v(R)(0) and referred to the surface.
对于具有连续垂直变化材料特性的任意各向异性半空间,推导了瑞利速度(v(R)(\omega))近似为(v(R)(0)(1 + B/\omega))的高频频散系数(B)的显式封闭形式表达式。结果涉及两个矩阵,一个由速度中的表面牵引力导数组成,另一个由其温策尔 - 克拉默斯 - 布里渊系数组成,它们与参考均匀半空间中瑞利波的振幅矢量收缩。这些“要素”通常通过基本弹性矩阵及其一阶导数来定义,两者均在(v = v(R)(0))处取值并参考表面。