Suppr超能文献

正畸牙齿移动和牙根吸收的三维力学环境

Three-dimensional mechanical environment of orthodontic tooth movement and root resorption.

作者信息

Viecilli Rodrigo F, Katona Thomas R, Chen Jie, Hartsfield James K, Roberts W Eugene

机构信息

Biomechanics Laboratory, Department of Orthodontics and Orofacial Genetics, Indiana University School of Dentistry and Purdue School of Engineering and Technology, Indianapolis, Ind 46202, USA.

出版信息

Am J Orthod Dentofacial Orthop. 2008 Jun;133(6):791.e11-26. doi: 10.1016/j.ajodo.2007.11.023.

Abstract

INTRODUCTION

The tension-compression theory of bone mechanotransduction is ubiquitous in orthodontics. However, partly due to deficiencies in the characterization of the mechanical environment, there is no consensus on the mechanisms that link stimuli to root resorption and bone response. In this study, we analyzed the predominant directions of tension and compression in the alveolar structures.

METHODS

An idealized tooth model was constructed with computer-aided design for finite element stress analysis. The principal stress magnitudes and directions were calculated in tipping and translation.

RESULTS

The highest principal stress magnitudes in the root, periodontal ligament (PDL), and alveolar surface occurred predominantly in the longitudinal, radial, and hoop directions, respectively. On the compression side, the only structure consistently in compression in all directions was the PDL; however, magnitudes were different in different directions.

CONCLUSIONS

In the same region of root, PDL, and bone, there can be compression in 1 structure and tension in another. At a given point in a structure, compression and tension can coexist in different directions. Magnitudes of compression and tension are typically different in different directions. Because of direction swaps between principal stresses, previously published data of only stress magnitude plots can be confusing and perhaps impossible to understand or correlate with biological responses. To prevent ambiguities, a reference to a principal stress should include not only the structure, but also its predominant direction. Combined stress magnitude and direction results suggest that the PDL is the initiator of mechanotransduction.

摘要

引言

骨机械转导的张力-压缩理论在正畸学中普遍存在。然而,部分由于机械环境表征方面的不足,对于将刺激与牙根吸收和骨反应联系起来的机制尚无共识。在本研究中,我们分析了牙槽结构中张力和压缩的主要方向。

方法

构建一个理想化的牙齿模型,采用计算机辅助设计进行有限元应力分析。计算倾斜和移动时的主应力大小和方向。

结果

牙根、牙周膜(PDL)和牙槽表面的最高主应力大小分别主要出现在纵向、径向和环向。在压缩侧,在所有方向上始终处于压缩状态的唯一结构是牙周膜;然而,不同方向上的大小不同。

结论

在牙根、牙周膜和骨的同一区域,一个结构可能受压而另一个结构可能受拉。在结构中的给定一点,压缩和拉伸可在不同方向上共存。压缩和拉伸的大小在不同方向上通常不同。由于主应力之间的方向互换,以前仅发表的应力大小图数据可能会令人困惑,甚至可能无法理解或与生物学反应相关联。为避免歧义,提及主应力时不仅应包括结构,还应包括其主要方向。综合应力大小和方向结果表明,牙周膜是机械转导的启动者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验