文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

非编码 RNA 在正畸牙齿移动中的作用:牙周组织重塑的新见解。

Role of noncoding RNAs in orthodontic tooth movement: new insights into periodontium remodeling.

机构信息

Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.

出版信息

J Transl Med. 2023 Feb 9;21(1):101. doi: 10.1186/s12967-023-03951-9.


DOI:10.1186/s12967-023-03951-9
PMID:36759852
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9912641/
Abstract

Orthodontic tooth movement (OTM) is biologically based on the spatiotemporal remodeling process in periodontium, the mechanisms of which remain obscure. Noncoding RNAs (ncRNAs), especially microRNAs and long noncoding RNAs, play a pivotal role in maintaining periodontal homeostasis at the transcriptional, post-transcriptional, and epigenetic levels. Under force stimuli, mechanosensitive ncRNAs with altered expression levels transduce mechanical load to modulate intracellular genes. These ncRNAs regulate the biomechanical responses of periodontium in the catabolic, anabolic, and coupling phases throughout OTM. To achieve this, down or upregulated ncRNAs actively participate in cell proliferation, differentiation, autophagy, inflammatory, immune, and neurovascular responses. This review highlights the regulatory mechanism of fine-tuning ncRNAs in periodontium remodeling during OTM, laying the foundation for safe, precise, and personalized orthodontic treatment.

摘要

正畸牙齿移动(OTM)在生物学上基于牙周组织的时空重塑过程,其机制尚不清楚。非编码 RNA(ncRNA),特别是 microRNA 和长非编码 RNA,在转录、转录后和表观遗传水平上对维持牙周组织内稳态起着关键作用。在力刺激下,表达水平改变的机械敏感 ncRNA 将机械负荷转导到调节细胞内基因。这些 ncRNA 调节 OTM 过程中整个牙周组织的生物力学反应的分解代谢、合成代谢和偶联阶段。为此,下调或上调的 ncRNA 积极参与细胞增殖、分化、自噬、炎症、免疫和神经血管反应。本综述强调了在 OTM 过程中牙周组织重塑中精细调控 ncRNA 的调节机制,为安全、精确和个性化的正畸治疗奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/557e8e10c126/12967_2023_3951_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/2186666ad2fe/12967_2023_3951_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/89d2fdb59f62/12967_2023_3951_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/e09f0e093244/12967_2023_3951_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/8bf4d1381d80/12967_2023_3951_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/397be9971214/12967_2023_3951_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/557e8e10c126/12967_2023_3951_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/2186666ad2fe/12967_2023_3951_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/89d2fdb59f62/12967_2023_3951_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/e09f0e093244/12967_2023_3951_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/8bf4d1381d80/12967_2023_3951_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/397be9971214/12967_2023_3951_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13dd/9912641/557e8e10c126/12967_2023_3951_Fig6_HTML.jpg

相似文献

[1]
Role of noncoding RNAs in orthodontic tooth movement: new insights into periodontium remodeling.

J Transl Med. 2023-2-9

[2]
microRNA-21 Contributes to Orthodontic Tooth Movement.

J Dent Res. 2016-7-20

[3]
Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade.

Int J Oral Sci. 2021-6-28

[4]
In Vitro Compression Model for Orthodontic Tooth Movement Modulates Human Periodontal Ligament Fibroblast Proliferation, Apoptosis and Cell Cycle.

Biomolecules. 2021-6-23

[5]
Neural regulation of alveolar bone remodeling and periodontal ligament metabolism during orthodontic tooth movement in response to therapeutic loading.

J World Fed Orthod. 2022-10

[6]
Role of mechanosensitive ion channel Piezo1 in tension-side orthodontic alveolar bone remodeling in rats.

Arch Oral Biol. 2023-11

[7]
Force-induced Adrb2 in periodontal ligament cells promotes tooth movement.

J Dent Res. 2014-11

[8]
Roles and mechanisms of YAP/TAZ in orthodontic tooth movement.

J Cell Physiol. 2021-11

[9]
Immune Changes Induced by Orthodontic Forces: A Critical Review.

J Dent Res. 2022-1

[10]
Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element.

Orthod Craniofac Res. 2009-5

引用本文的文献

[1]
Characterization of a periodontal-inflammatory microRNA profile during multibracket orthodontic treatment in adolescents.

Sci Rep. 2025-6-3

[2]
Matrix Stiffness Regulates the Osteogenic Differentiation of hPDLSCs via DNA Methylation.

Int Dent J. 2025-5-1

[3]
The Potential Regulatory Role of Ferroptosis in Orthodontically Induced Inflammatory Root Resorption.

Int J Mol Sci. 2024-12-19

[4]
Impact of periodontal microRNAs associated with alveolar bone remodeling during orthodontic tooth movement: a randomized clinical trial.

J Transl Med. 2024-12-30

[5]
Stem Cells: Present Understanding and Prospects for Regenerative Dentistry.

J Funct Biomater. 2024-10-15

[6]
MicroRNA binding site variants-new potential markers of primary osteoporosis in men and women.

Front Genet. 2024-10-1

[7]
Mechanisms of mechanical force in periodontal homeostasis: a review.

Front Immunol. 2024

[8]
Mechanical force-activated CD109 on periodontal ligament stem cells governs osteogenesis and osteoclast to promote alveolar bone remodeling.

Stem Cells Transl Med. 2024-8-16

[9]
Circular RNA-Mediated Regulation of Oral Tissue-Derived Stem Cell Differentiation: Implications for Oral Medicine and Orthodontic Applications.

Stem Cell Rev Rep. 2024-4

[10]
Levels of Inflammatory and Bone Metabolic Markers in the Gingival Crevicular Fluid of Individuals Undergoing Fixed Orthodontic Treatment in Comparison to Those Utilizing Invisalign.

Medicina (Kaunas). 2023-12-1

本文引用的文献

[1]
A large-scale benchmark study of tools for the classification of protein-coding and non-coding RNAs.

Nucleic Acids Res. 2022-11-28

[2]
Periodontal ligament fibroblasts-derived exosomes induced by PGE inhibit human periodontal ligament stem cells osteogenic differentiation via activating miR-34c-5p/SATB2/ERK.

Exp Cell Res. 2022-10-15

[3]
Analysis of ceRNA networks during mechanical tension-induced osteogenic differentiation of periodontal ligament stem cells.

Eur J Oral Sci. 2022-10

[4]
MiR-20a: a mechanosensitive microRNA that regulates fluid shear stress-mediated osteogenic differentiation via the BMP2 signaling pathway by targeting BAMBI and SMAD6.

Ann Transl Med. 2022-6

[5]
Next RNA Therapeutics: The Mine of Non-Coding.

Int J Mol Sci. 2022-7-5

[6]
MicroRNA-34a and microRNA-146a target CELF3 and suppress the osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch.

J Dent Sci. 2022-7

[7]
Spatiotemporal MicroRNA-Gene Expression Network Related to Orofacial Clefts.

J Dent Res. 2022-10

[8]
Fluid Shear Stress Promotes Osteoblast Proliferation and Suppresses Mitochondrial-Mediated Osteoblast Apoptosis Through the miR-214-3p-ATF4 Signaling Axis.

Physiol Res. 2022-8-31

[9]
A reduced level of the long non-coding RNA SNHG8 activates the NF-kappaB pathway by releasing functional HIF-1alpha in a hypoxic inflammatory microenvironment.

Stem Cell Res Ther. 2022-6-3

[10]
Regulation of osteoclast-mediated bone resorption by microRNA.

Cell Mol Life Sci. 2022-5-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索