Suppr超能文献

基于刺激-反应曲线及其变异性对刺激进行分类。

Classification of stimuli based on stimulus-response curves and their variability.

作者信息

Lansky Petr, Pokora Ondrej, Rospars Jean-Pierre

机构信息

Institute of Physiology, Academy of Sciences of Czech Republic,Videnska 1083, 142 20 Prague 4, Czech Republic.

出版信息

Brain Res. 2008 Aug 15;1225:57-66. doi: 10.1016/j.brainres.2008.04.058. Epub 2008 Apr 30.

Abstract

Neuronal responses evoked in sensory neurons by static stimuli of various intensities are usually characterized by their input-output transfer function, i.e. by plotting the firing frequency (or any other measurable neuron response) versus the corresponding stimulus intensity. The aim of the present article is to determine the stimulus intensities which can be considered as "the most important" from two different points of view: transferring as much information as possible and coding the intensity as precisely as possible. These two problems are very different because, for example, an informative signal may be difficult to identify. We show that the role of noise is crucial in both problems. To obtain the range of stimuli which are the best identified, we propose to use measures based on Fisher information as known from the theory of statistical inference. To classify the most important stimuli from the point of view of information transfer, we suggest methods based on information theory. We show that both the most identifiable signal and the most informative signal are not unique. To study this, a generic model of input-output transfer function is analyzed under the influence of several different types of noise. Finally, the methods are illustrated on a model and data pertaining to olfactory sensory neurons.

摘要

各种强度的静态刺激在感觉神经元中引发的神经元反应通常由其输入-输出传递函数来表征,即通过绘制放电频率(或任何其他可测量的神经元反应)与相应刺激强度的关系图来表征。本文的目的是从两个不同的角度确定可被视为“最重要”的刺激强度:尽可能多地传递信息以及尽可能精确地编码强度。这两个问题非常不同,因为例如,一个信息丰富的信号可能难以识别。我们表明,噪声在这两个问题中都起着关键作用。为了获得最易识别的刺激范围,我们建议使用基于统计推断理论中已知的费希尔信息的度量。为了从信息传递的角度对最重要的刺激进行分类,我们提出基于信息论的方法。我们表明,最易识别的信号和信息量最大的信号都不是唯一的。为了研究这一点,在几种不同类型噪声的影响下分析了输入-输出传递函数的通用模型。最后,在与嗅觉感觉神经元相关的模型和数据上说明了这些方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验