Suppr超能文献

基于 PSTH 使用单个神经元集合对感觉刺激进行分类。

PSTH-based classification of sensory stimuli using ensembles of single neurons.

作者信息

Foffani Guglielmo, Moxon Karen Anne

机构信息

School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.

出版信息

J Neurosci Methods. 2004 May 30;135(1-2):107-20. doi: 10.1016/j.jneumeth.2003.12.011.

Abstract

The problem of understanding how ensembles of neurons code for somatosensory information has been defined as a classification problem: given the response of a population of neurons to a set of stimuli, which stimulus generated the response on a single-trial basis? Multivariate statistical techniques such as linear discriminant analysis (LDA) and artificial neural networks (ANNs), and different types of preprocessing stages, such as principal and independent component analysis, have been used to solve this classification problem, with surprisingly small performance differences. Therefore, the goal of this project was to design a new method to maximize computational efficiency rather than classification performance. We developed a peri-stimulus time histogram (PSTH)-based method, which consists of creating a set of templates based on the average neural responses to stimuli and classifying each single trial by assigning it to the stimulus with the 'closest' template in the Euclidean distance sense. The PSTH-based method is computationally more efficient than methods as simple as linear discriminant analysis, performs significantly better than discriminant analyses (linear, quadratic or Mahalanobis) when small binsizes are used (1 ms) and as well as LDA with any other binsize, is optimal among other minimum-distance classifiers and can be optimally applied on raw neural data without a previous stage of dimension reduction. We conclude that the PSTH-based method is an efficient alternative to more sophisticated methods such as LDA and ANNs to study how ensemble of neurons code for discrete sensory stimuli, especially when datasets with many variables are used and when the time resolution of the neural code is one of the factors of interest.

摘要

理解神经元群体如何编码躯体感觉信息的问题已被定义为一个分类问题

给定一群神经元对一组刺激的反应,在单次试验的基础上,是哪种刺激产生了这种反应?诸如线性判别分析(LDA)和人工神经网络(ANN)等多元统计技术,以及不同类型的预处理阶段,如主成分分析和独立成分分析,已被用于解决这个分类问题,而性能差异小得惊人。因此,本项目的目标是设计一种新方法,以最大限度地提高计算效率而非分类性能。我们开发了一种基于刺激周围时间直方图(PSTH)的方法,该方法包括根据对刺激的平均神经反应创建一组模板,并通过在欧几里得距离意义上为每个单次试验分配“最接近”的模板来对其进行分类。基于PSTH的方法在计算上比简单的线性判别分析方法更高效,在使用小时间间隔(1毫秒)时,其性能明显优于判别分析(线性、二次或马氏)以及任何其他时间间隔的LDA,在其他最小距离分类器中是最优的,并且可以在无需先前降维阶段的情况下直接应用于原始神经数据。我们得出结论,基于PSTH的方法是一种有效的替代方法,可替代诸如LDA和ANN等更复杂的方法,用于研究神经元群体如何编码离散的感觉刺激,特别是在使用具有许多变量的数据集以及神经编码的时间分辨率是感兴趣的因素之一时。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验