Johansson Magnus, Bouakaz Elli, Lovmar Martin, Ehrenberg Måns
Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S-751 24 Uppsala, Sweden.
Mol Cell. 2008 Jun 6;30(5):589-98. doi: 10.1016/j.molcel.2008.04.010.
The speed of protein synthesis determines the growth rate of bacteria. Current biochemical estimates of the rate of protein elongation are small and incompatible with the rate of protein elongation in the living cell. With a cell-free system for protein synthesis, optimized for speed and accuracy, we have estimated the rate of peptidyl transfer from a peptidyl-tRNA in P site to a cognate aminoacyl-tRNA in A site at various temperatures. We have found these rates to be much larger than previously measured and fully compatible with the speed of protein elongation for E. coli cells growing in rich medium. We have found large activation enthalpy and small activation entropy for peptidyl transfer, similar to experimental estimates of these parameters for A site analogs of aminoacyl-tRNA. Our work has opened a useful kinetic window for biochemical studies of protein synthesis, bridging the gap between in vitro and in vivo data on ribosome function.
蛋白质合成的速度决定了细菌的生长速率。目前对蛋白质延伸速率的生化估计值较小,且与活细胞中蛋白质延伸的速率不相符。利用一个针对速度和准确性进行了优化的无细胞蛋白质合成系统,我们在不同温度下估算了肽基从P位点的肽基 - tRNA转移至A位点的同源氨酰 - tRNA的速率。我们发现这些速率比之前测量的要大得多,并且与在丰富培养基中生长的大肠杆菌细胞的蛋白质延伸速度完全相符。我们发现肽基转移具有较大的活化焓和较小的活化熵,这与氨酰 - tRNA的A位点类似物的这些参数的实验估计值相似。我们的工作为蛋白质合成的生化研究打开了一个有用的动力学窗口,弥合了核糖体功能的体外和体内数据之间的差距。