Qureshi Shabir H, Yang Likui, Manithody Chandrashekhara, Bae Jong-Sup, Rezaie Alireza R
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA.
Biochim Biophys Acta. 2008 Sep;1780(9):1080-6. doi: 10.1016/j.bbagen.2008.05.004. Epub 2008 May 19.
Substitution of the Gla-domain of activated protein C (APC) with the Gla-domain of prothrombin (APC-PTGla) improves the anticoagulant activity of APC independent of protein S. Previous FRET studies showed that this substitution alters the active-site topography of this mutant, rendering it identical to the active site of the APC-protein S complex. In this study, we characterized the functional properties and the active-site topography of another APC chimera containing the Gla-domain of factor X (APC-FXGla). We discovered that the anticoagulant activity of this mutant was similarly improved independent of protein S. The average distance of the closest approach (L) between the donor dye fluorescein attached to the active site of APC derivatives and the acceptor dye octadecylrhodamine incorporated into PC/PS vesicles was determined to be 99 A for APC and 84-86 A for both APC-PTGla and APC-FXGla. Protein S minimally influenced the L values of the APC chimeras, however, it lowered this value to 87 A for wild-type APC. Further studies revealed that neither chimera elicits a protective signaling response in the TNF-alpha-activated endothelial cells. These results suggest that unique structural features within the Gla-domain of APC enable the protease to interact with endothelial protein C receptor in the antiinflammatory pathway, while the same features also cause an inherently lower specific activity for APC in the anticoagulant pathway. This adaptation has made APC a cofactor-dependent protease, requiring the cofactor function of protein S for its optimal anticoagulant function, which appears to involve the alteration of the active-site topography of APC above the membrane surface.
用凝血酶原的γ-羧基谷氨酸结构域(APC-PTGla)替代活化蛋白C(APC)的γ-羧基谷氨酸结构域可提高APC的抗凝活性,且不依赖蛋白S。先前的荧光共振能量转移(FRET)研究表明,这种替代改变了该突变体的活性位点拓扑结构,使其与APC-蛋白S复合物的活性位点相同。在本研究中,我们对另一种含有因子X的γ-羧基谷氨酸结构域的APC嵌合体(APC-FXGla)的功能特性和活性位点拓扑结构进行了表征。我们发现,该突变体的抗凝活性同样得到了提高,且不依赖蛋白S。连接到APC衍生物活性位点的供体染料荧光素与掺入PC/PS囊泡中的受体染料十八烷基罗丹明之间的最接近平均距离(L),对于APC为99 Å,对于APC-PTGla和APC-FXGla均为84 - 86 Å。蛋白S对APC嵌合体的L值影响最小,然而,它将野生型APC的该值降低到了87 Å。进一步的研究表明,这两种嵌合体在肿瘤坏死因子-α激活的内皮细胞中均未引发保护性信号反应。这些结果表明,APC的γ-羧基谷氨酸结构域内的独特结构特征使该蛋白酶能够在抗炎途径中与内皮蛋白C受体相互作用,而相同的特征也导致APC在抗凝途径中固有地具有较低的比活性。这种适应性使APC成为一种依赖辅因子的蛋白酶,其最佳抗凝功能需要蛋白S的辅因子功能,这似乎涉及膜表面上方APC活性位点拓扑结构的改变。