Helbig Kerstin, Grosse Cornelia, Nies Dietrich H
Institute for Biology, Life Science Faculty, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str 3, 06099 Halle, Germany.
J Bacteriol. 2008 Aug;190(15):5439-54. doi: 10.1128/JB.00272-08. Epub 2008 Jun 6.
The higher affinity of Cd(2+) for sulfur compounds than for nitrogen and oxygen led to the theoretical consideration that cadmium toxicity should result mainly from the binding of Cd(2+) to sulfide, thiol groups, and sulfur-rich complex compounds rather than from Cd(2+) replacement of transition-metal cations from nitrogen- or oxygen-rich biological compounds. This hypothesis was tested by using Escherichia coli for a global transcriptome analysis of cells synthesizing glutathione (GSH; wild type), gamma-glutamylcysteine (DeltagshB mutant), or neither of the two cellular thiols (DeltagshA mutant). The resulting data, some of which were validated by quantitative reverse transcription-PCR, were sorted using the KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology system, which groups genes hierarchically with respect to the cellular functions of their respective products. The main difference among the three strains concerned tryptophan biosynthesis, which was up-regulated in wild-type cells upon cadmium shock and strongly up-regulated in DeltagshA cells but repressed in DeltagshB cells containing gamma-glutamylcysteine instead of GSH. Overall, however, all three E. coli strains responded to cadmium shock similarly, with the up-regulation of genes involved in protein, disulfide bond, and oxidative damage repair; cysteine and iron-sulfur cluster biosynthesis; the production of proteins containing sensitive iron-sulfur clusters; the storage of iron; and the detoxification of Cd(2+) by efflux. General energy conservation pathways and iron uptake were down-regulated. These findings indicated that the toxic action of Cd(2+) indeed results from the binding of the metal cation to sulfur, lending support to the hypothesis tested.
镉离子(Cd(2+))对硫化合物的亲和力高于对氮和氧的亲和力,这引发了理论上的思考:镉的毒性应主要源于Cd(2+)与硫化物、巯基和富含硫的复合化合物的结合,而非Cd(2+)从富含氮或氧的生物化合物中取代过渡金属阳离子。通过使用大肠杆菌对合成谷胱甘肽(GSH;野生型)、γ-谷氨酰半胱氨酸(DeltagshB突变体)或两种细胞硫醇均不合成(DeltagshA突变体)的细胞进行全局转录组分析,对这一假设进行了验证。通过定量逆转录PCR对部分所得数据进行了验证,然后使用KEGG(京都基因与基因组百科全书)直系同源系统对数据进行分类,该系统根据各自产物的细胞功能对基因进行分层分组。这三种菌株之间的主要差异涉及色氨酸生物合成,镉冲击后野生型细胞中色氨酸生物合成上调,DeltagshA细胞中强烈上调,但在含有γ-谷氨酰半胱氨酸而非GSH的DeltagshB细胞中受到抑制。然而,总体而言,所有三种大肠杆菌菌株对镉冲击的反应相似,涉及蛋白质、二硫键和氧化损伤修复;半胱氨酸和铁硫簇生物合成;含敏感铁硫簇的蛋白质的产生;铁的储存;以及通过外排对Cd(2+)进行解毒的基因上调。一般的能量守恒途径和铁摄取下调。这些发现表明,Cd(2+)的毒性作用确实源于金属阳离子与硫的结合,支持了所验证的假设。