Suppr超能文献

[植物对重金属镉的耐受机制]

[Mechanisms of heavy metal cadmium tolerance in plants].

作者信息

Zhang Jun, Shu Wen-Sheng

机构信息

State Key Laboratory for Bio-Control, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.

出版信息

Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2006 Feb;32(1):1-8.

Abstract

Cadmium (Cd) is a strongly phytotoxic heavy metal, which inhibits plant growth and even leads to plant death. The main symptoms of Cd(2+) toxicity to plants are stunting and chlorosis. Plant has developed some functions for Cd(2+) tolerance, which include cell wall binding, chelation with phytochelatins (PCs), compartmentation of Cd(2+) in vacuole, and enrichment in leaf trichomes. However, Cd(2+) tolerance in plant is more likely involved in an integrated network of multiple response processes than several isolated functions cited above. In the network, the processes of sulfur metabolism, antioxidative response, and Cd(2+) transport across plasma and vacuole membrane in plant are closely related with Cd(2+) tolerance in plant. The processes of sulfur uptake, assimilation and sequential sulfur metabolism in plant respond to Cd(2+) stress. The expression of sulfur transporters with varied affinity was changed in different ways under Cd(2+) stress, and the high expression of ATP sulfurylase (APS) and adenosine 5' phosphosulfate reductase (APR), which may help to keep the supply of S(2-) for cysteine (Cys) synthesis. The efficiency of Cys synthesis may function in Cd(2+) detoxification, and the up-regulated expression of Ser acetyltransferase (SAT) and O-acetyl-ser (thiol)-lyase (OASTL) has been found in some Cd(2+) treated plants. Reduced glutathione (GSH) is an important antioxidant and the precursor of PCs, glutamylcysteine synthetase (GCS) and glutathione synthetase (GS) catalyze GSH synthesis from Cys, overexpression of the two enzymes can improve Cd(2+) tolerance in plant. PCs are more important Cd(2+) chelators than metallothioneins (MTs) in plants, and the expression of phytochelatin synthase (PCS) responds to Cd(2+) stress. Plant antioxidative system also contributes to Cd(2+) tolerance. The antioxidative response to Cd(2+)-induced oxidative stress varies in different plants and tissues and is also Cd(2+) concentration dependent, and the Cd hyperaccumulator plants show strong tolerance to oxidative stress. Some genes encoded metal transporters with Cd(2+) substrate specificity at plasma and vacuole membranes, which have been isolated and characterized in recent years. These genes play critical roles in Cd(2+) translocation, allocation, and compartmentation in plants. Despite the great progresses made in the field in recent years, there are still some issues which need further exploration, such as the detail of signal transduction and the responses of gene regulation to Cd(2+), the rhizosphere activation and root adsorption to soil Cd(2+), Cd(2+) trafficking in xylem and phloem, Cd(2+) translocation to fruit and seed, and the possible presence of a high-affinity Cd(2+) transporter in Cd hyperaccumulators.

摘要

镉(Cd)是一种具有强烈植物毒性的重金属,会抑制植物生长甚至导致植物死亡。Cd(2+)对植物产生毒性的主要症状是生长迟缓与黄化。植物已形成了一些对Cd(2+)的耐受机制,包括细胞壁结合、与植物螯合肽(PCs)螯合、将Cd(2+)区室化于液泡以及在叶毛状体中富集。然而,植物对Cd(2+)的耐受性更可能涉及多个响应过程的整合网络,而非上述几种孤立的功能。在该网络中,植物中硫代谢、抗氧化反应以及Cd(2+)跨质膜和液泡膜运输的过程与植物对Cd(2+)的耐受性密切相关。植物中硫的吸收、同化及后续硫代谢过程会对Cd(2+)胁迫作出响应。在Cd(2+)胁迫下,具有不同亲和力的硫转运蛋白的表达会以不同方式发生变化,而ATP硫酸化酶(APS)和腺苷5'-磷酸硫酸还原酶(APR)的高表达可能有助于维持半胱氨酸(Cys)合成所需的S(2-)供应。Cys合成效率可能在Cd(2+)解毒中发挥作用,并且在一些经Cd(2+)处理的植物中已发现丝氨酸乙酰转移酶(SAT)和O-乙酰丝氨酸(硫醇)裂解酶(OASTL)的表达上调。还原型谷胱甘肽(GSH)是一种重要的抗氧化剂且是PCs的前体,谷氨酰半胱氨酸合成酶(GCS)和谷胱甘肽合成酶(GS)催化由Cys合成GSH,这两种酶的过表达可提高植物对Cd(2+)的耐受性。在植物中,PCs是比金属硫蛋白(MTs)更重要的Cd(2+)螯合剂,植物螯合肽合酶(PCS)的表达会对Cd(2+)胁迫作出响应。植物抗氧化系统也有助于植物对Cd(2+)的耐受性。不同植物和组织对Cd(2+)诱导的氧化胁迫的抗氧化反应各不相同,且也取决于Cd(2+)浓度,Cd超富集植物对氧化胁迫表现出较强的耐受性。近年来已分离并鉴定了一些在质膜和液泡膜上具有Cd(2+)底物特异性的编码金属转运蛋白的基因。这些基因在植物Cd(2+)的转运、分配和区室化过程中起关键作用。尽管近年来该领域取得了巨大进展,但仍有一些问题需要进一步探索,例如信号转导的细节以及基因调控对Cd(2+)的响应、根际对土壤Cd(2+)的活化和根系吸附、Cd(2+)在木质部和韧皮部中的运输、Cd(2+)向果实和种子的转运,以及Cd超富集植物中可能存在的高亲和力Cd(2+)转运蛋白。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验