Ben Hassen Hanen, Masmoudi Afif, Rebai Ahmed
Unit of Bioinformatics and Biostatistics, Centre of Biotechnology of Sfax, Sfax 3038, Tunisia.
J Theor Biol. 2008 Aug 21;253(4):717-24. doi: 10.1016/j.jtbi.2008.04.030. Epub 2008 May 4.
We introduce here the concept of Implicit networks which provide, like Bayesian networks, a graphical modelling framework that encodes the joint probability distribution for a set of random variables within a directed acyclic graph. We show that Implicit networks, when used in conjunction with appropriate statistical techniques, are very attractive for their ability to understand and analyze biological data. Particularly, we consider here the use of Implicit networks for causal inference in biomolecular pathways. In such pathways, an Implicit network encodes dependencies among variables (proteins, genes), can be trained to learn causal relationships (regulation, interaction) between them and then used to predict the biological response given the status of some key proteins or genes in the network. We show that Implicit networks offer efficient methodologies for learning from observations without prior knowledge and thus provide a good alternative to classical inference in Bayesian networks when priors are missing. We illustrate our approach by an application to simulated data for a simplified signal transduction pathway of the epidermal growth factor receptor (EGFR) protein.
我们在此引入隐式网络的概念,它与贝叶斯网络一样,提供了一种图形建模框架,该框架在有向无环图中对一组随机变量的联合概率分布进行编码。我们表明,隐式网络与适当的统计技术结合使用时,因其理解和分析生物数据的能力而极具吸引力。特别地,我们在此考虑将隐式网络用于生物分子途径中的因果推断。在这样的途径中,隐式网络对变量(蛋白质、基因)之间的依赖性进行编码,可以进行训练以学习它们之间的因果关系(调控、相互作用),然后在给定网络中某些关键蛋白质或基因状态的情况下用于预测生物学反应。我们表明,隐式网络提供了无需先验知识即可从观测中学习的有效方法,因此在缺少先验信息时,它是贝叶斯网络中经典推断的一个很好的替代方法。我们通过将其应用于表皮生长因子受体(EGFR)蛋白简化信号转导途径的模拟数据来说明我们的方法。