Fedorenko Olga, Strutz-Seebohm Nathalie, Henrion Ulrike, Ureche Oana N, Lang Florian, Seebohm Guiscard, Lang Undine E
Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076, Tuebingen, Germany.
Psychopharmacology (Berl). 2008 Jul;199(1):47-54. doi: 10.1007/s00213-008-1095-x. Epub 2008 Jun 11.
Evidence for an association between phosphatidylinositol-4-phosphate 5-kinase II alpha (PIP5K2A) and schizophrenia was recently obtained and replicated in several samples. PIP5K2A controls the function of KCNQ channels via phosphatidylinositol-4,5-bisphosphate (PIP2) synthesis. Interestingly, recent data suggest that KCNQ channels suppress basal activity of dopaminergic neurons and dopaminergic firing. Activation of KCNQ accordingly attenuates the central stimulating effects of dopamine, cocaine, methylphenidate, and phenylcyclidine.
The aim of this study was to explore the functional relevance of PIP5K2A, which might influence schizophrenic behavior.
Here, we study the effects of the neuronal PIP5K2A on KCNQ2, KCNQ5, KCNQ2/KCNQ3, and KCNQ3/KCNQ5 in the Xenopus expression system.
We find that wild-type PIP5K2A but not the schizophrenia-associated mutant (N251S)-PIP5K2A activates heteromeric KCNQ2/KCNQ3 and KCNQ3/KCNQ5, the molecular correlate of neuronal M channels. Homomeric KCNQ2 and KCNQ5 channels were not activated by the kinase indicating that the presence of KCNQ3 in the channel complex is required for the kinase-mediated effects. Acute application of PI(4,5)P2 and a PIP2 scavenger indicates that the mutation N251S renders the kinase PIP5K2A inactive.
Our results suggest that the schizophrenia-linked mutation of the kinase results in reduced KCNQ channel function and thereby might explain the loss of dopaminergic control in schizophrenic patients. Moreover, the addictive potential of dopaminergic drugs often observed in schizophrenic patients might be explained by this mechanism. At least, the insufficiency of (N251S)-PIP5K2A to stimulate neuronal M channels may contribute to the clinical phenotype of schizophrenia.
最近在多个样本中获得并重复了磷脂酰肌醇 - 4 - 磷酸5 - 激酶IIα(PIP5K2A)与精神分裂症之间关联的证据。PIP5K2A通过磷脂酰肌醇 - 4,5 - 二磷酸(PIP2)合成来控制KCNQ通道的功能。有趣的是,最近的数据表明KCNQ通道抑制多巴胺能神经元的基础活性和多巴胺能放电。因此,KCNQ的激活减弱了多巴胺、可卡因、哌醋甲酯和苯环己哌啶的中枢刺激作用。
本研究旨在探讨可能影响精神分裂症行为的PIP5K2A的功能相关性。
在此,我们在非洲爪蟾表达系统中研究神经元PIP5K2A对KCNQ2、KCNQ5、KCNQ2 / KCNQ3和KCNQ3 / KCNQ5的影响。
我们发现野生型PIP5K2A而非与精神分裂症相关的突变体(N251S)-PIP5K2A激活异源KCNQ2 / KCNQ3和KCNQ3 / KCNQ5,即神经元M通道的分子对应物。同型KCNQ2和KCNQ5通道未被该激酶激活,这表明通道复合物中KCNQ3的存在是激酶介导作用所必需的。PI(4,5)P2和PIP2清除剂的急性应用表明,N251S突变使激酶PIP5K2A失活。
我们的结果表明,该激酶与精神分裂症相关的突变导致KCNQ通道功能降低,从而可能解释了精神分裂症患者多巴胺能控制的丧失。此外,精神分裂症患者中经常观察到的多巴胺能药物成瘾潜力可能由此机制解释。至少,(N251S)-PIP5K2A刺激神经元M通道的不足可能导致精神分裂症的临床表型。