Suppr超能文献

Calcium-induced sensitization of the central helix of calmodulin to proteolysis.

作者信息

Mackall J, Klee C B

机构信息

Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

Biochemistry. 1991 Jul 23;30(29):7242-7. doi: 10.1021/bi00243a028.

Abstract

The rate of proteolysis of trypsin-sensitive bonds was used to examine the nature of the structural changes accompanying Ca2+ and Mg2+ binding to calmodulin. In the Ca(2+)-free form, the rates of proteolysis at Arg-106 and Arg-37 are rapid (greater than 300 and 28 nmol min-1 mL-1, respectively), the bonds at Arg-74, Lys-75, and Lys-77, in the central helix, are cleaved more slowly (10 nmol min-1 mL-1), and a lag in the cleavage at the remaining bonds (Lys-13, Lys-30, Arg-86, Arg-90, and Arg-126) suggests that they are not cleaved in the native protein. High concentrations of Ca2+, but not Mg2+, almost completely abolish proteolysis at Arg-106 and drastically reduce the rate of cleavage at Arg-37. Both Ca2+ and Mg2+ exert a moderate protective effect on the proteolysis of the central helix. These results suggest that the F-helix of domains III and, to a lesser extent, the F-helix of domain I are somewhat flexible in the Ca(2+)-free form and are stabilized by Ca2+. Whereas full occupancy of the four Ca(2+)-binding sites produces little change in the susceptibility of the central helix to proteolytic attack, binding of two Ca2+ produces a 10-fold enhancement of the rate of proteolysis in this part of the molecule. We propose that at intermediate Ca2+ levels the flexibility of the central helix of calmodulin is greatly increased, resulting in the transient formation of intermediates which have not been detected by spectroscopic techniques but are trapped by the irreversible action of trypsin.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验