Gao J, Yin D H, Yao Y, Sun H, Qin Z, Schöneich C, Williams T D, Squier T C
Department of Biochemistry, University of Kansas, Lawrence 66045-2106, USA.
Biophys J. 1998 Mar;74(3):1115-34. doi: 10.1016/S0006-3495(98)77830-0.
We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and molecular mass distributions of oxidatively modified CaM species (CaMox) resulting from exposure to H2O2. From these rates, we find that oxidative modification of methionine to the corresponding methionine sulfoxide does not predispose CaM to further oxidative modification. These results indicate that methionine oxidation results in no large-scale alterations in the tertiary structure of CaMox, because the rates of oxidative modification of individual methionines are directly related to their solvent exposure. Likewise, CD measurements indicate that methionine oxidation results in little change in the apparent alpha-helical content at 28 degrees C, and only a small (0.3 +/- 0.1 kcal mol(-1)) decrease in thermal stability, suggesting the disruption of a limited number of specific noncovalent interactions. Fluorescence lifetime, anisotropy, and quenching measurements of N-(1-pyrenyl)-maleimide (PMal) covalently bound to Cys26 indicate local structural changes around PMal in the amino-terminal domain in response to oxidative modification of methionine residues in the carboxyl-terminal domain. Because the opposing globular domains remain spatially distant in both native and oxidatively modified CaM, the oxidative modification of methionines in the carboxyl-terminal domain are suggested to modify the conformation of the amino-terminal domain through alterations in the structural features involving the interdomain central helix. The structural basis for the linkage between oxidative modification and these global conformational changes is discussed in terms of possible alterations in specific noncovalent interactions that have previously been suggested to stabilize the central helix in CaM.
我们运用电喷雾电离质谱法(ESI-MS)、圆二色光谱法(CD)和荧光光谱法,来研究小麦胚钙调蛋白(CaM)中蛋氨酸残基氧化修饰所导致的二级和三级结构变化,以及这种变化如何阻止质膜钙-ATP酶的激活。通过ESI-MS,我们测定了暴露于过氧化氢后氧化修饰的CaM物种(CaMox)的修饰速率和分子量分布。从这些速率中,我们发现蛋氨酸氧化为相应的甲硫氨酸亚砜并不会使CaM更易于进一步氧化修饰。这些结果表明,蛋氨酸氧化不会导致CaMox的三级结构发生大规模改变,因为单个蛋氨酸的氧化修饰速率与它们暴露于溶剂中的程度直接相关。同样,CD测量表明,蛋氨酸氧化在28摄氏度时导致表观α-螺旋含量变化不大,热稳定性仅略有降低(0.3±0.1千卡/摩尔(-1)),这表明有限数量的特定非共价相互作用被破坏。对共价结合到Cys26的N-(1-芘基)-马来酰亚胺(PMal)进行荧光寿命、各向异性和猝灭测量,结果表明,响应于羧基末端结构域中蛋氨酸残基的氧化修饰,PMal周围氨基末端结构域发生了局部结构变化。由于在天然和氧化修饰的CaM中,相对的球状结构域在空间上都保持较远的距离,因此推测羧基末端结构域中蛋氨酸的氧化修饰通过涉及结构域间中央螺旋的结构特征改变来修饰氨基末端结构域的构象。我们根据先前认为可稳定CaM中中央螺旋的特定非共价相互作用的可能变化,讨论了氧化修饰与这些全局构象变化之间联系的结构基础。