Daun Silvia, Rubin Jonathan, Vodovotz Yoram, Roy Anirban, Parker Robert, Clermont Gilles
Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Scaife 606B, 3550 Terrace St, Pittsburgh, PA 15261, USA.
J Theor Biol. 2008 Aug 21;253(4):843-53. doi: 10.1016/j.jtbi.2008.04.033. Epub 2008 May 4.
In previous work, we developed an 8-state nonlinear dynamic model of the acute inflammatory response, including activated phagocytic cells, pro- and anti-inflammatory cytokines, and tissue damage, and calibrated it to data on cytokines from endotoxemic rats. In the interest of parsimony, the present work employed parametric sensitivity and local identifiability analysis to establish a core set of parameters predominantly responsible for variability in model solutions. Parameter optimization, facilitated by varying only those parameters belonging to this core set, was used to identify an ensemble of parameter vectors, each representing an acceptable local optimum in terms of fit to experimental data. Individual models within this ensemble, characterized by their different parameter values, showed similar cytokine but diverse tissue damage behavior. A cluster analysis of the ensemble of models showed the existence of a continuum of acceptable models, characterized by compensatory mechanisms and parameter changes. We calculated the direct correlations between the core set of model parameters and identified three mechanisms responsible for the conversion of the diverse damage time courses to similar cytokine behavior in these models. Given that tissue damage level could be an indicator of the likelihood of mortality, our findings suggest that similar cytokine dynamics could be associated with very different mortality outcomes, depending on the balance of certain inflammatory elements.
在之前的工作中,我们构建了一个急性炎症反应的八状态非线性动力学模型,该模型涵盖了活化的吞噬细胞、促炎和抗炎细胞因子以及组织损伤,并根据内毒素血症大鼠的细胞因子数据对其进行了校准。出于简约性考虑,本研究采用参数敏感性和局部可识别性分析来确定一组核心参数,这些参数主要决定了模型解的变异性。通过仅改变属于该核心集的那些参数来进行参数优化,以识别一组参数向量,每个参数向量在拟合实验数据方面都代表一个可接受的局部最优解。该组内的各个模型,因其不同的参数值而具有相似的细胞因子表现,但组织损伤行为各异。对模型组进行聚类分析表明,存在一系列可接受的模型,其特征为补偿机制和参数变化。我们计算了模型核心参数集之间的直接相关性,并确定了三种机制,这些机制导致了这些模型中不同的损伤时间进程转变为相似的细胞因子行为。鉴于组织损伤水平可能是死亡率的一个指标,我们的研究结果表明,根据某些炎症因子的平衡情况,相似的细胞因子动态变化可能与截然不同的死亡率结果相关。