Hirsch Michael, Habeck Michael
Department of Empirical Inference, Max-Planck-Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany.
Bioinformatics. 2008 Oct 1;24(19):2184-92. doi: 10.1093/bioinformatics/btn396. Epub 2008 Jul 28.
Protein structure ensembles provide important insight into the dynamics and function of a protein and contain information that is not captured with a single static structure. However, it is not clear a priori to what extent the variability within an ensemble is caused by internal structural changes. Additional variability results from overall translations and rotations of the molecule. And most experimental data do not provide information to relate the structures to a common reference frame. To report meaningful values of intrinsic dynamics, structural precision, conformational entropy, etc., it is therefore important to disentangle local from global conformational heterogeneity.
We consider the task of disentangling local from global heterogeneity as an inference problem. We use probabilistic methods to infer from the protein ensemble missing information on reference frames and stable conformational sub-states. To this end, we model a protein ensemble as a mixture of Gaussian probability distributions of either entire conformations or structural segments. We learn these models from a protein ensemble using the expectation-maximization algorithm. Our first model can be used to find multiple conformers in a structure ensemble. The second model partitions the protein chain into locally stable structural segments or core elements and less structured regions typically found in loops. Both models are simple to implement and contain only a single free parameter: the number of conformers or structural segments. Our models can be used to analyse experimental ensembles, molecular dynamics trajectories and conformational change in proteins.
The Python source code for protein ensemble analysis is available from the authors upon request.
蛋白质结构集合为深入了解蛋白质的动力学和功能提供了重要信息,并且包含单个静态结构所无法捕捉的信息。然而,事先并不清楚集合内的变异性在多大程度上是由内部结构变化引起的。额外的变异性源于分子的整体平移和旋转。而且大多数实验数据并未提供将这些结构与共同参考系相关联的信息。因此,为了报告内在动力学、结构精度、构象熵等有意义的值,区分局部和全局构象异质性很重要。
我们将区分局部和全局异质性的任务视为一个推理问题。我们使用概率方法从蛋白质集合中推断关于参考系和稳定构象子状态的缺失信息。为此,我们将蛋白质集合建模为整个构象或结构片段的高斯概率分布的混合。我们使用期望最大化算法从蛋白质集合中学习这些模型。我们的第一个模型可用于在结构集合中找到多个构象异构体。第二个模型将蛋白质链划分为局部稳定的结构片段或核心元件以及通常在环中发现的结构较少的区域。这两个模型都易于实现,并且仅包含一个自由参数:构象异构体或结构片段的数量。我们的模型可用于分析实验集合、分子动力学轨迹和蛋白质中的构象变化。
蛋白质集合分析的Python源代码可根据作者要求提供。