Le Van Quyen Michel, Bragin Anatol, Staba Richard, Crépon Benoit, Wilson Charles L, Engel Jerome
Centre National de la Recherche Scientifique, Cognitive Neuroscience and Brain Imaging Laboratory, Unité Propre de Recherche 640, Hôpital de la Pitié-Salpêtrière, 75651 Paris, France.
J Neurosci. 2008 Jun 11;28(24):6104-10. doi: 10.1523/JNEUROSCI.0437-08.2008.
High-frequency field ripples occur in the rodent hippocampal formation and are assumed to depend on interneuron type-specific firing patterns, structuring the activity of pyramidal cells. Ripples with similar characteristics are also present in humans, yet their underlying cellular correlates are still unknown. By in vivo recording interneurons and pyramidal cells in the human hippocampal formation, we find that cell type-specific firing patterns and phase-locking on a millisecond timescale can be distinguished during ripples. In particular, pyramidal cells fired preferentially at the highest amplitude of the ripple, but interneurons began to discharge earlier than pyramidal cells. Furthermore, a large fraction of cells were phase-locked to the ripple cycle, but the preferred phase of discharge of interneurons followed the maximum discharge probability of pyramidal neurons. These relationships between human ripples and unit activity are qualitatively similar to that observed in vivo in the rodents, suggesting that their underlying mechanisms are similar.
高频场涟漪出现在啮齿动物的海马结构中,被认为依赖于中间神经元类型特异性放电模式,构建锥体细胞的活动。具有相似特征的涟漪在人类中也存在,但其潜在的细胞关联仍不清楚。通过在体记录人类海马结构中的中间神经元和锥体细胞,我们发现在涟漪期间可以区分细胞类型特异性放电模式和毫秒级时间尺度上的锁相。特别是,锥体细胞在涟漪的最高振幅时优先放电,但中间神经元比锥体细胞更早开始放电。此外,很大一部分细胞与涟漪周期锁相,但中间神经元的首选放电相位跟随锥体细胞的最大放电概率。人类涟漪与单位活动之间的这些关系在质量上与在啮齿动物体内观察到的相似,表明它们的潜在机制相似。