Ouko Rehema K, Mukaka Mavuto, Ohuma Eric O
Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
BMC Med Res Methodol. 2025 Feb 17;25(1):40. doi: 10.1186/s12874-025-02485-6.
Joint models are powerful statistical models that allow us to define a joint likelihood for quantifying the association between two or more outcomes. Joint modelling has been shown to reduce bias in parameter estimates, increase the efficiency of statistical inference by incorporating the correlation between measurements, and allow borrowing of information in cases where data is missing for variables of interest. Most joint modelling methods and applications involve time-to-event data. There is less awareness about the amount of literature available for joint models of non-time-to-event data. Therefore, this review's main objective is to summarise the current state of joint modelling of non-time-to-event longitudinal data.
We conducted a search in PubMed, Embase, Medline, Scopus, and Web of Science following the PRISMA-ScR guidelines for articles published up to 28 January 2024. Studies were included if they focused on joint modelling of non-time-to-event longitudinal data and published in English. Exclusions were made for time-to-event articles, conference abstracts, book chapters, and studies without full text. We extracted information on statistical methods, association structure, estimation methods, software, etc. RESULTS: We identified 4,681 studies from the search. After removing 2,769 duplicates, 1,912 were reviewed by title and abstract, and 190 underwent full-text review. Ultimately, 74 studies met inclusion criteria and spanned from 2001 to 2024, with the majority (64 studies; 86%) published between 2014 and 2024. Most joint models were based on a frequentist approach (48 studies; 65%) and applied a linear mixed-effects model. The random effect was the most commonly applied association structure for linking two sub-models (63 studies; 85%). Estimation of model parameters was commonly done using Markov Chain Monte Carlo with Gibbs sampler algorithm (10 studies; 38%) for the Bayesian approach, whereas maximum likelihood was the most common (33 studies; 68.75%) for the frequentist approach. Most studies used R statistical software (33 studies; 40%) for analysis.
A wide range of methods for joint-modelling non-time-to-event longitudinal data exist and have been applied to various areas. An exponential increase in the application of joint modelling of non-time-to-event longitudinal data has been observed in the last decade. There is an opportunity to leverage potential benefits of joint modelling for non-time-to-event longitudinal data for reducing bias in parameter estimates, increasing efficiency of statistical inference by incorporating the correlation between measurements, and allowing borrowing of information in cases with missing data.
联合模型是强大的统计模型,使我们能够定义一个联合似然性,以量化两个或多个结果之间的关联。联合建模已被证明可以减少参数估计中的偏差,通过纳入测量之间的相关性提高统计推断的效率,并在感兴趣变量的数据缺失的情况下允许信息借用。大多数联合建模方法和应用都涉及生存时间数据。对于非生存时间数据的联合模型的可用文献数量,人们的了解较少。因此,本综述的主要目的是总结非生存时间纵向数据联合建模的现状。
我们按照PRISMA-ScR指南,在PubMed、Embase、Medline Scopus和Web of Science中对截至2024年1月28日发表的文章进行了检索。如果研究聚焦于非生存时间纵向数据的联合建模且以英文发表,则纳入研究。排除生存时间文章、会议摘要、书籍章节以及无全文的研究。我们提取了关于统计方法、关联结构、估计方法、软件等方面的信息。结果:我们从检索中识别出4681项研究。去除2,769项重复研究后,通过标题和摘要对1,912项研究进行了审查,190项研究进行了全文审查。最终,74项研究符合纳入标准,时间跨度从2001年至2024年,其中大多数(64项研究;86%)发表于2014年至2024年之间。大多数联合模型基于频率学派方法(48项研究;65%),并应用线性混合效应模型。随机效应是连接两个子模型最常用的关联结构(63项研究;85%)。对于贝叶斯方法,模型参数估计通常使用带有吉布斯采样器算法的马尔可夫链蒙特卡罗方法(10项研究;38%),而对于频率学派方法,最大似然法是最常用的(33项研究;68.75%)。大多数研究使用R统计软件(33项研究;40%)进行分析。
存在多种用于非生存时间纵向数据联合建模的方法,并已应用于各个领域。在过去十年中,观察到非生存时间纵向数据联合建模的应用呈指数增长。有机会利用非生存时间纵向数据联合建模的潜在益处,以减少参数估计中的偏差,通过纳入测量之间的相关性提高统计推断的效率,并在数据缺失的情况下允许信息借用。