Ulrich Konstantin, Sanders Monica, Grinberg Farida, Galvosas Petrik, Vasenkov Sergey
Fakultät für Physik und Geowissenschaften, Universität Leipzig, Leipzig, Germany.
Langmuir. 2008 Jul 15;24(14):7365-70. doi: 10.1021/la8002355. Epub 2008 Jun 14.
This work demonstrates the feasibility of noninvasive studies of lipid self-diffusion in model lipid membranes on the nanoscale using proton pulsed field gradient (PFG) NMR spectroscopy with high (up to 35 T/m) gradient amplitudes. Application of high gradients affords for the use of sufficiently small diffusion times under the conditions when the width of the gradient pulses is much smaller than the diffusion time. As a result, PFG NMR studies of partially restricted or anomalous diffusion in lipid bilayers become possible over length scales as small as 100 nm. This length scale is important because it is comparable to the size of membrane domains, or lipid rafts, which are believed to exist in biomembranes. In this work, high-gradient PFG NMR has been applied to study lipid self-diffusion in three-component planar-supported multibilayers (1,2-dioleoyl- sn-glycerol-3-phosphocholine/sphingomyelin/cholesterol). The degree of lipid orientation in the bilayers was determined with (31)P NMR. A special insert was designed to mechanically align the multibilayer stack at the magic angle with respect to the direction of the constant magnetic field to address the detrimental effects of proton dipole-dipole interactions on the NMR signal. This insert is an alternative to the conventional method of magic angle orientation of lipid membranes, the goniometer probe, which is not compatible with commercial high-gradient coils because of the lack of space in the magnet bore. Macroscopic orientation of the multibilayer stacks using the insert was confirmed with (1)H NMR spectroscopic studies and the comparison of results obtained from identical experiments using a goniometer probe for orientation. Diffusion studies were carried out at three different constant magnetic field strengths ( B 0) over a range of temperatures and diffusion times. The measured diffusivities were found to be in agreement with the data obtained previously by techniques that are limited to much larger length scales of diffusion observation than high-gradient PFG NMR.
这项工作证明了使用具有高(高达35 T/m)梯度幅度的质子脉冲场梯度(PFG)核磁共振光谱在纳米尺度上对模型脂质膜中的脂质自扩散进行无创研究的可行性。在梯度脉冲宽度远小于扩散时间的条件下,高梯度的应用使得能够使用足够短的扩散时间。结果,在小至100 nm的长度尺度上对脂质双层中部分受限或异常扩散的PFG NMR研究成为可能。这个长度尺度很重要,因为它与生物膜中被认为存在的膜结构域或脂筏的大小相当。在这项工作中,高梯度PFG NMR已被用于研究三元平面支撑多层膜(1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸胆碱/鞘磷脂/胆固醇)中的脂质自扩散。双层中脂质的取向程度通过(31)P NMR测定。设计了一个特殊的插入件,以使多层堆叠相对于恒定磁场方向以魔角机械排列,以解决质子偶极 - 偶极相互作用对NMR信号的不利影响。这个插入件是脂质膜魔角取向的传统方法——测角仪探头的替代方案,由于磁体孔中空间不足,测角仪探头与商业高梯度线圈不兼容。使用该插入件对多层堆叠进行宏观取向通过(1)H NMR光谱研究以及与使用测角仪探头进行取向的相同实验获得的结果进行比较得以证实。在三个不同的恒定磁场强度(B0)下,在一系列温度和扩散时间范围内进行了扩散研究。发现测得的扩散系数与先前通过仅限于比高梯度PFG NMR大得多的扩散观测长度尺度的技术获得的数据一致。