Skerker Jeffrey M, Perchuk Barrett S, Siryaporn Albert, Lubin Emma A, Ashenberg Orr, Goulian Mark, Laub Michael T
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Cell. 2008 Jun 13;133(6):1043-54. doi: 10.1016/j.cell.2008.04.040.
Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.
双组分信号转导系统是细菌感知和响应环境刺激的主要方式。细菌通常使用数十种或数百种这些由组氨酸激酶(HKs)及其同源反应调节因子(RRs)组成的旁系信号系统。通过这些信号通路准确传递信息并避免有害的串扰需要HK-RR相互作用具有极高的特异性。为了确定双组分信号特异性的决定因素,我们在同源激酶-调节因子对的大型多序列比对中研究了氨基酸共进化模式。基于这些结果,我们证明,当共进化残基的一个子集发生突变时,足以完全改变激酶EnvZ的底物特异性。我们的结果揭示了双组分信号通路中分子识别的基础,为合理改变这些通路提供了一种通用方法,并表明共进化分析可能有助于对其他信号系统和蛋白质-蛋白质相互作用进行重新编程。