Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway.
Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
mSystems. 2024 Apr 16;9(4):e0013024. doi: 10.1128/msystems.00130-24. Epub 2024 Mar 12.
In the genome, a set of highly conserved two-component systems (TCSs) composed of histidine kinases (HKs) and their cognate response regulators (RRs) sense and respond to environmental stimuli, which drive the adaptation of the bacteria. This study investigates the complex interplay between TCSs in USA300, a predominant methicillin-resistant strain, revealing shared and unique virulence regulatory pathways and genetic variations mediating signal specificity within TCSs. Using TCS-related mutants from the Nebraska Transposon Mutant Library, we analyzed the effects of inactivated TCS HKs and RRs on the production of various virulence factors, infection abilities, and adhesion assays. We found that the TCSs' influence on virulence determinants was not associated with their phylogenetic relationship, indicating divergent functional evolution. Using the co-crystallized structure of the DesK-DesR from and the modeled structures of the four NarL TCSs in , we identified interacting residues, revealing specificity determinants and conservation within the same TCS, even from different strain backgrounds. The interacting residues were highly conserved within strains but varied between species due to selection pressures and the coevolution of cognate pairs. This study unveils the complex interplay and divergent functional evolution of TCSs, highlighting their potential for future experimental exploration of phosphotransfer between cognate and non-cognate recombinant HK and RRs.IMPORTANCEGiven the widespread conservation of two-component systems (TCSs) in bacteria and their pivotal role in regulating metabolic and virulence pathways, they present a compelling target for anti-microbial agents, especially in the face of rising multi-drug-resistant infections. Harnessing TCSs therapeutically necessitates a profound understanding of their evolutionary trajectory in signal transduction, as this underlies their unique or shared virulence regulatory pathways. Such insights are critical for effectively targeting TCS components, ensuring an optimized impact on bacterial virulence, and mitigating the risk of resistance emergence via the evolution of alternative pathways. Our research offers an in-depth exploration of virulence determinants controlled by TCSs in , shedding light on the evolving specificity determinants that orchestrate interactions between their cognate pairs.
在基因组中,一组由组氨酸激酶(HKs)及其同源反应调节剂(RRs)组成的高度保守的双组分系统(TCSs)感知和响应环境刺激,从而推动细菌的适应。本研究调查了 USA300 中 TCS 之间的复杂相互作用,USA300 是一种主要的耐甲氧西林 菌株,揭示了共享和独特的毒力调节途径以及介导 TCS 内信号特异性的遗传变异。使用内布拉斯加转座子突变体文库中的 TCS 相关突变体,我们分析了失活 TCS HK 和 RR 对各种毒力因子产生、感染能力和粘附测定的影响。我们发现,TCS 对毒力决定因素的影响与其系统发育关系无关,表明其功能进化存在差异。使用来自 的 DesK-DesR 共结晶结构和 中四个 NarL TCS 的建模结构,我们鉴定了相互作用的残基,揭示了同一 TCS 内的特异性决定因素和保守性,即使来自不同的菌株背景。相互作用的残基在菌株内高度保守,但由于选择压力和同源对的共同进化,在不同物种之间存在差异。这项研究揭示了 TCS 之间复杂的相互作用和功能进化的差异,强调了它们在未来对同源和非同源重组 HK 和 RR 之间磷酸转移的实验探索中的潜力。
重要性鉴于双组分系统(TCSs)在细菌中的广泛保守性及其在调节代谢和毒力途径中的关键作用,它们是抗微生物药物的一个有吸引力的靶点,特别是在面临不断增加的多药耐药感染的情况下。从治疗的角度利用 TCS 系统需要深入了解它们在信号转导中的进化轨迹,因为这是它们独特或共享的毒力调节途径的基础。这种洞察力对于有效地靶向 TCS 组件至关重要,以确保对细菌毒力产生最佳影响,并通过替代途径的进化降低产生耐药性的风险。我们的研究深入探讨了 TCS 控制的 中的毒力决定因素,揭示了协调它们同源对之间相互作用的不断进化的特异性决定因素。