Lange Oliver F, Lakomek Nils-Alexander, Farès Christophe, Schröder Gunnar F, Walter Korvin F A, Becker Stefan, Meiler Jens, Grubmüller Helmut, Griesinger Christian, de Groot Bert L
Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
Science. 2008 Jun 13;320(5882):1471-5. doi: 10.1126/science.1157092.
Protein dynamics are essential for protein function, and yet it has been challenging to access the underlying atomic motions in solution on nanosecond-to-microsecond time scales. We present a structural ensemble of ubiquitin, refined against residual dipolar couplings (RDCs), comprising solution dynamics up to microseconds. The ensemble covers the complete structural heterogeneity observed in 46 ubiquitin crystal structures, most of which are complexes with other proteins. Conformational selection, rather than induced-fit motion, thus suffices to explain the molecular recognition dynamics of ubiquitin. Marked correlations are seen between the flexibility of the ensemble and contacts formed in ubiquitin complexes. A large part of the solution dynamics is concentrated in one concerted mode, which accounts for most of ubiquitin's molecular recognition heterogeneity and ensures a low entropic complex formation cost.
蛋白质动力学对于蛋白质功能至关重要,然而,要在纳秒到微秒的时间尺度上获取溶液中潜在的原子运动却具有挑战性。我们展示了一种泛素的结构集合,通过残余偶极耦合(RDC)进行优化,包含了长达微秒的溶液动力学。该集合涵盖了在46个泛素晶体结构中观察到的完整结构异质性,其中大多数是与其他蛋白质的复合物。因此,构象选择而非诱导契合运动足以解释泛素的分子识别动力学。在集合的灵活性与泛素复合物中形成的接触之间可以看到明显的相关性。溶液动力学的很大一部分集中在一种协同模式中,这解释了泛素分子识别异质性的大部分,并确保了低熵的复合物形成成本。