Suppr超能文献

对草酸-磷酸盐混合体系中肾结石形成的理解。

An understanding of renal stone development in a mixed oxalate-phosphate system.

作者信息

Guan Xiangying, Wang Lijun, Dosen Anja, Tang Ruikang, Giese Rossman F, Giocondi Jennifer L, Orme Christine A, Hoyer John R, Nancollas George H

机构信息

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.

出版信息

Langmuir. 2008 Jul 15;24(14):7058-60. doi: 10.1021/la8007987. Epub 2008 Jun 17.

Abstract

The in vivo formation of calcium oxalate concretions having calcium phosphate nidi is simulated in an in vitro (37 degrees C, pH 6.0) dual constant composition (DCC) system undersaturated (sigma DCPD = -0.330) with respect to brushite (DCPD, CaHPO 4 . 2H 2O) and slightly supersaturated (sigma COM = 0.328) with respect to calcium oxalate monohydrate (COM, CaC2O4 . H2O). The brushite dissolution provides calcium ions that raise the COM supersaturation, which is heterogeneously nucleated either on or near the surface of the dissolving calcium phosphate crystals. The COM crystallites may then aggregate, simulating kidney stone formation. Interestingly, two intermediate phases, anhydrous dicalcium phosphate (monetite, CaHPO4) and calcium oxalate trihydrate (COT), are also detected by X-ray diffraction during this brushite-COM transformation. In support of clinical observations, the results of these studies demonstrate the participation of calcium phosphate phases in COM crystallization providing a possible physical chemical mechanism for kidney stone formation.

摘要

在体外(37摄氏度,pH 6.0)双恒定组成(DCC)系统中模拟了具有磷酸钙核心的草酸钙结石的体内形成过程,该系统相对于透钙磷石(DCPD,CaHPO₄·2H₂O)不饱和(σDCPD = -0.330),而相对于一水合草酸钙(COM,CaC₂O₄·H₂O)略有过饱和(σCOM = 0.328)。透钙磷石的溶解提供了钙离子,从而提高了COM的过饱和度,COM在溶解的磷酸钙晶体表面或其附近发生异质成核。然后COM微晶可能会聚集,模拟肾结石的形成。有趣的是,在这种透钙磷石-COM转变过程中,通过X射线衍射还检测到了两个中间相,无水磷酸二钙(磷酸氢钙,CaHPO₄)和三水合草酸钙(COT)。为支持临床观察结果,这些研究结果表明磷酸钙相参与了COM结晶过程,为肾结石的形成提供了一种可能的物理化学机制。

相似文献

1
An understanding of renal stone development in a mixed oxalate-phosphate system.
Langmuir. 2008 Jul 15;24(14):7058-60. doi: 10.1021/la8007987. Epub 2008 Jun 17.
4
Urinary supersaturation with respect to brushite in patients suffering calcium oxalate lithiasis.
Nephrol Dial Transplant. 1990;5(3):179-84. doi: 10.1093/ndt/5.3.179.
5
Calcium oxalate: calcium phosphate transformations.
Urol Res. 2010 Aug;38(4):277-80. doi: 10.1007/s00240-010-0292-3. Epub 2010 Jul 13.
6
Enzymatic dissolution of calcium and struvite crystals: in vitro evaluation of biochemical requirements.
Urology. 2011 Sep;78(3):721.e13-721.e17. doi: 10.1016/j.urology.2011.04.046. Epub 2011 Jul 13.
7
Aggregation of Calcium Phosphate and Oxalate Phases in the Formation of Renal Stones.
Cryst Growth Des. 2015 Jan 7;15(1):204-211. doi: 10.1021/cg501209h. Epub 2014 Nov 12.
8
Vickers hardness studies of calcium oxalate monohydrate and brushite urinary stones.
J Endourol. 2006 Jan;20(1):59-63. doi: 10.1089/end.2006.20.59.
10
Calcium stone disease: a multiform reality.
Urol Res. 2005 Jun;33(3):194-8. doi: 10.1007/s00240-004-0459-x.

引用本文的文献

1
Optical microscopy versus scanning electron microscopy in urolithiasis.
Urol Res. 2009 Oct;37(5):293-7. doi: 10.1007/s00240-009-0211-7. Epub 2009 Aug 21.

本文引用的文献

1
Mineralization kinetics: a constant composition approach.
Science. 1978 Jun 2;200(4345):1059-60. doi: 10.1126/science.200.4345.1059.
2
Crystallization in the nephron.
Urol Res. 1999 Dec;27(6):397-403. doi: 10.1007/s002400050127.
3
Intratubular crystallization events.
World J Urol. 1997;15(4):219-28. doi: 10.1007/BF01367659.
4
Evidence of calcium phosphate supersaturation in the loop of Henle.
Am J Physiol. 1996 Apr;270(4 Pt 2):F604-13. doi: 10.1152/ajprenal.1996.270.4.F604.
6
A method for quantitative wet chemical analysis of urinary calculi.
Clin Chim Acta. 1984 Jun 27;140(1):9-20. doi: 10.1016/0009-8981(84)90146-3.
9
Calcium oxalate trihydrate in urinary calculi.
Urol Res. 1985;13(6):281-3. doi: 10.1007/BF00262657.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验