Suppr超能文献

一种用于检验假设和设定效应量置信区间的普遍稳健方法。

A generally robust approach for testing hypotheses and setting confidence intervals for effect sizes.

作者信息

Keselman H J, Algina James, Lix Lisa M, Wilcox Rand R, Deering Kathleen N

机构信息

Department of Psychology, University of Manitoba, 190 Dysart Road, Winnipeg, Manitoba, Canada.

出版信息

Psychol Methods. 2008 Jun;13(2):110-29. doi: 10.1037/1082-989X.13.2.110.

Abstract

Standard least squares analysis of variance methods suffer from poor power under arbitrarily small departures from normality and fail to control the probability of a Type I error when standard assumptions are violated. This article describes a framework for robust estimation and testing that uses trimmed means with an approximate degrees of freedom heteroscedastic statistic for independent and correlated groups designs in order to achieve robustness to the biasing effects of nonnormality and variance heterogeneity. The authors describe a nonparametric bootstrap methodology that can provide improved Type I error control. In addition, the authors indicate how researchers can set robust confidence intervals around a robust effect size parameter estimate. In an online supplement, the authors use several examples to illustrate the application of an SAS program to implement these statistical methods.

摘要

标准的最小二乘方差分析方法在偏离正态性的任意小偏差下功效较差,并且在违反标准假设时无法控制第一类错误的概率。本文描述了一个稳健估计和检验的框架,该框架在独立和相关组设计中使用具有近似自由度异方差统计量的截尾均值,以实现对非正态性和方差异质性的偏倚效应的稳健性。作者描述了一种可以提供改进的第一类错误控制的非参数自助法。此外,作者指出了研究人员如何围绕稳健效应大小参数估计设置稳健的置信区间。在在线补充材料中,作者使用几个例子来说明应用SAS程序来实施这些统计方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验