Suppr超能文献

[STAXI-2的法语改编版,C.D. 斯皮尔伯格的状态-特质愤怒表达量表]

[The French adaptation of the STAXI-2, C.D. Spielberger's State-trait anger expression inventory].

作者信息

Borteyrou X, Bruchon-Schweitzer M, Spielberger C D

机构信息

Equipe de psychologie de la santé, laboratoire de psychologie EA 3662, université Bordeaux-2 Victor-Segalen, 3 ter, place de la Victoire, Bordeaux cedex, France.

出版信息

Encephale. 2008 Jun;34(3):249-55. doi: 10.1016/j.encep.2007.06.001. Epub 2007 Oct 10.

Abstract

The assessment of anger has received increasing attention because of growing evidence that anger and hostility are related to heart disease. Research on anger assessment has also been stimulated by the development of psychometric measures for evaluating different aspects of anger. First, we review the major self-report scales used to assess anger and hostility. The scales appeared to have been constructed without explicit definition of anger and there is little differentiation between the experience and expression of anger. The factor-derived STAXI-2 is a 57-item measure of the expression of anger, and is comprised of the state-trait anger scale [Spielberger CD, Jacobs G, Russell JS, Crane RS. Assessment of anger: the state-trait anger scale. In: Butcher JN, Spielberger CD, editors. Advances in personality assessment, 2. Hillside, NJ: Erlbaum; 1983] and the anger expression scale (AX; Spielberger et al., 1985). The state anger scale (SAS) includes three subscales: feeling angry, feeling like expressing anger verbally, and feeling like expressing anger physically. The trait anger scale (TAS) consists of two subscales: angry temperament and angry reaction. The AX deals with the direction of both anger expression and anger control, resulting in four revised AX subscales: anger expression/out (verbal and physical, aggressive behavior directed toward other persons or objects), and anger expression/in (anger suppression), anger control/out (attempts to monitor and prevent the outward expression of anger) and anger control/in (active attempts to calm down and reduce angry feelings). The aim of this work was to examine the factor structure and the psychometric properties of the French adaptation of STAXI-2. A sample of 1085 French subjects, 546 female and 539 male, between 18 and 70 years old participated in the study. The 57 items of the three original subscales (SAS, TAS, and AX scale) were analyzed separately by sex and by subscale, using exploratory factor analyses (principal axis analysis, followed by promax rotations). For the first part of the questionnaire (SAS), factor analysis suggested the presence of three factors with eigenvalues >1.0; but the factor structure obtained for males and females differed and was difficult to interpret. Moreover, the explained variance of Factors 2 and 3 was low. Velicer's MAP criteria and screen test established that one solution factor was more relevant. Confirmatory factor analysis suggested that the three factor solution was acceptable, but the unifactorial solution adjusted better to the data. For the second part of the questionnaire (TAS) factor analysis was conducted following the same procedure, and two factors were extracted. The explained variance of Factor 2 was very low. Velicer's MAP criteria and screen test suggested that the solution factor was more relevant. Moreover, the adjustment parameters of the original two-factor structure were not satisfactory. Finally, the analyses of the 32 items of anger expression and control yielded four factors with eigenvalues >1.0. All items loaded higher than 0.38 on the corresponding factor and lower than 0.30 in other factor. The factor structure of the AX scale was fairly robust, both for males and females. Internal consistency and test-retest reliability of the subscales were acceptable except for the SAS. The correlations of the six subscales with four criterion variables (Buss Durkee hostility inventory, Cook and Medley Ho scale, NEO PI-R Ho scale and Courtauld emotions control scale) were in the expected direction, establishing their convergent validity. In summary, the analysis reported in this study checked the factor structure of the STAXI-2 translated into French. The state anger dimension was also essentially confirmed, but no distinction was found between the three components: feeling angry, feeling like expressing anger verbally, and feeling like expressing anger physically. Moreover, the distinction between angry temperament and angry reaction was not confirmed because of gender differences, but we established a robust and valid trait anger factor. Finally, we confirmed the factor structure of the original anger expression scale without gender differences. Some practical and theoretical perspectives for the use of the French adaptation of the STAXI-2 are suggested.

摘要

由于越来越多的证据表明愤怒和敌意与心脏病有关,愤怒评估受到了越来越多的关注。用于评估愤怒不同方面的心理测量方法的发展也推动了对愤怒评估的研究。首先,我们回顾用于评估愤怒和敌意的主要自我报告量表。这些量表似乎是在没有对愤怒进行明确定义的情况下构建的,并且在愤怒的体验和表达之间几乎没有区别。基于因素分析的状态 - 特质愤怒表达量表(STAXI - 2)是一个由57个项目组成的愤怒表达测量工具,它由状态 - 特质愤怒量表[斯皮尔伯格CD,雅各布斯G,拉塞尔JS,克兰RS。愤怒评估:状态 - 特质愤怒量表。见:布彻JN,斯皮尔伯格CD编。人格评估进展,第2卷。新泽西州希尔赛德:埃尔拉姆;1983]和愤怒表达量表(AX;斯皮尔伯格等人,1985)组成。状态愤怒量表(SAS)包括三个子量表:感到愤怒、想要口头表达愤怒、想要身体表达愤怒。特质愤怒量表(TAS)由两个子量表组成:愤怒气质和愤怒反应。AX量表涉及愤怒表达和愤怒控制的方向,产生了四个修订后的AX子量表:愤怒向外表达(言语和身体,针对他人或物体的攻击行为)、愤怒向内表达(愤怒抑制)、愤怒控制向外(试图监测和防止愤怒的外在表达)和愤怒控制向内(积极尝试冷静下来并减少愤怒情绪)。这项工作的目的是检验STAXI - 2法语版的因素结构和心理测量特性。1085名年龄在18至70岁之间的法国受试者参与了这项研究,其中546名女性,539名男性。使用探索性因素分析(主轴分析,随后进行斜交旋转),按性别和子量表分别对三个原始子量表(SAS、TAS和AX量表)的57个项目进行分析。对于问卷的第一部分(SAS),因素分析表明存在三个特征值大于1.0的因素;但男性和女性获得的因素结构不同且难以解释。此外,因素2和因素3的解释方差较低。韦利泽的MAP标准和筛选检验确定单因素解决方案更合适。验证性因素分析表明三因素解决方案是可以接受的,但单因素解决方案与数据的拟合度更好。对于问卷的第二部分(TAS),按照相同程序进行因素分析,提取了两个因素。因素2的解释方差非常低。韦利泽的MAP标准和筛选检验表明单因素解决方案更合适。此外,原始两因素结构的调整参数并不令人满意。最后,对愤怒表达和控制的32个项目的分析产生了四个特征值大于1.0的因素。所有项目在相应因素上的载荷高于0.38,在其他因素上的载荷低于0.30。AX量表的因素结构对于男性和女性来说都相当稳健。除了SAS外,子量表的内部一致性和重测信度是可以接受的。六个子量表与四个效标变量(巴斯 - 杜克敌意量表、库克和梅德利霍氏量表、大五人格量表中的敌意量表和考陶尔德情绪控制量表)的相关性符合预期方向,确立了它们的收敛效度。总之,本研究报告的分析检验了翻译成法语的STAXI - 2的因素结构。状态愤怒维度也基本得到证实,但在感到愤怒、想要口头表达愤怒和想要身体表达愤怒这三个组成部分之间没有发现区别。此外,由于性别差异,愤怒气质和愤怒反应之间的区别没有得到证实,但我们确立了一个稳健且有效的特质愤怒因素。最后,我们证实了原始愤怒表达量表的因素结构不存在性别差异。文中还提出了一些关于使用STAXI - 2法语版的实践和理论观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验