Lavie Arnon, Su Ying, Ghassemi Mahmood, Novak Richard M, Caffrey Michael, Sekulic Nikolina, Monnerjahn Christian, Konrad Manfred, Cook James L
Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612, USA.
Section of Infectious Diseases, Immunology and International Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
J Gen Virol. 2008 Jul;89(Pt 7):1672-1679. doi: 10.1099/vir.0.2008/000273-0.
Emergence of antiviral drug resistance is a major challenge to human immunodeficiency virus (HIV) therapy. The archetypal example of this problem is loss of antiviral activity of the nucleoside analogue 3'-azido-3'-deoxythymidine (AZT), caused by mutations in reverse transcriptase (RT), the viral polymerase. AZT resistance results from an imbalance between rates of AZT-induced proviral DNA chain termination and RT-induced excision of the chain-terminating nucleotide. Conversion of the AZT prodrug from its monophosphorylated to diphosphorylated form by human thymidylate kinase (TMPK) is inefficient, resulting in accumulation of the monophosphorylated AZT metabolite (AZT-MP) and a low concentration of the active triphosphorylated metabolite (AZT-TP). We reasoned that introduction of an engineered, highly active TMPK into T cells would overcome this functional bottleneck in AZT activation and thereby shift the balance of AZT activity sufficiently to block replication of formerly AZT-resistant HIV. Molecular engineering was used to link highly active, engineered TMPKs to the protein transduction domain of Tat for direct cell delivery. Combined treatment of HIV-infected T cells with AZT and these cell-permeable, engineered TMPKs restored AZT-induced repression of viral production. These results provide an experimental basis for the development of new strategies to therapeutically increase the intracellular concentrations of active nucleoside analogue metabolites as a means to overcome emerging drug resistance.
抗病毒药物耐药性的出现是人类免疫缺陷病毒(HIV)治疗面临的一项重大挑战。这一问题的典型例子是核苷类似物3'-叠氮-3'-脱氧胸苷(AZT)抗病毒活性的丧失,这是由病毒聚合酶逆转录酶(RT)的突变所致。AZT耐药性是由于AZT诱导的前病毒DNA链终止速率与RT诱导的链终止核苷酸切除速率之间的失衡。人胸苷酸激酶(TMPK)将AZT前药从其单磷酸化形式转化为二磷酸化形式的效率低下,导致单磷酸化AZT代谢物(AZT-MP)积累,而活性三磷酸化代谢物(AZT-TP)浓度较低。我们推断,将一种经过工程改造的高活性TMPK导入T细胞将克服AZT激活过程中的这一功能瓶颈,从而充分改变AZT活性的平衡,以阻断先前对AZT耐药的HIV的复制。利用分子工程将高活性的、经过工程改造的TMPK与Tat的蛋白转导结构域相连,以便直接递送至细胞。用AZT和这些可穿透细胞的、经过工程改造过的TMPK联合处理HIV感染的T细胞,恢复了AZT诱导的病毒产生抑制作用。这些结果为开发新策略提供了实验依据,这些新策略旨在通过治疗性提高活性核苷类似物代谢物的细胞内浓度来克服新出现的耐药性。