Lavie A, Ostermann N, Brundiers R, Goody R S, Reinstein J, Konrad M, Schlichting I
Department of Physical Biochemistry, Max Planck Institute for Molecular Physiology, Rheinlanddamm 201, 44139 Dortmund, Germany.
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14045-50. doi: 10.1073/pnas.95.24.14045.
The crystal structures of Escherichia coli thymidylate kinase (TmpK) in complex with P1-(5'-adenosyl)-P5-(5'-thymidyl)pentaphosphate and P1-(5'-adenosyl)P5-[5'-(3'-azido-3'-deoxythymidine)] pentaphosphate have been solved to 2.0-A and 2.2-A resolution, respectively. The overall structure of the bacterial TmpK is very similar to that of yeast TmpK. In contrast to the human and yeast TmpKs, which phosphorylate 3'-azido-3'-deoxythymidine 5'-monophosphate (AZT-MP) at a 200-fold reduced turnover number (kcat) in comparison to the physiological substrate dTMP, reduction of kcat is only 2-fold for the bacterial enzyme. The different kinetic properties toward AZT-MP between the eukaryotic TmpKs and E. coli TmpK can be rationalized by the different ways in which these enzymes stabilize the presumed transition state and the different manner in which a carboxylic acid side chain in the P loop interacts with the deoxyribose of the monophosphate. Yeast TmpK interacts with the 3'-hydroxyl of dTMP through Asp-14 of the P loop in a bidentate manner: binding of AZT-MP results in a shift of the P loop to accommodate the larger substituent. In E. coli TmpK, the corresponding residue is Glu-12, and it interacts in a side-on fashion with the 3'-hydroxyl of dTMP. This different mode of interaction between the P loop carboxylic acid with the 3' substituent of the monophosphate deoxyribose allows the accommodation of an azido group in the case of the E. coli enzyme without significant P loop movement. In addition, although the yeast enzyme uses Arg-15 (a glycine in E. coli) to stabilize the transition state, E. coli seems to use Arg-153 from a region termed Lid instead. Thus, the binding of AZT-MP to the yeast TmpK results in the shift of a catalytic residue, which is not the case for the bacterial kinase.
已分别解析出与P1-(5'-腺苷基)-P5-(5'-胸苷基)五磷酸及P1-(5'-腺苷基)P5-[5'-(3'-叠氮-3'-脱氧胸苷)]五磷酸形成复合物的大肠杆菌胸苷酸激酶(TmpK)的晶体结构,分辨率分别为2.0 Å和2.2 Å。细菌TmpK的整体结构与酵母TmpK非常相似。与人类和酵母TmpK相比,它们对3'-叠氮-3'-脱氧胸苷5'-单磷酸(AZT-MP)的磷酸化周转数(kcat)相较于生理底物dTMP降低了200倍,而细菌酶的kcat降低仅2倍。真核生物TmpK和大肠杆菌TmpK对AZT-MP的不同动力学特性可通过这些酶稳定假定过渡态的不同方式以及P环中羧酸侧链与单磷酸脱氧核糖相互作用的不同方式来解释。酵母TmpK通过P环的Asp-14以双齿方式与dTMP的3'-羟基相互作用:AZT-MP的结合导致P环移动以容纳更大的取代基。在大肠杆菌TmpK中,相应残基是Glu-12,它以侧对侧方式与dTMP的3'-羟基相互作用。P环羧酸与单磷酸脱氧核糖的3'取代基之间这种不同的相互作用模式使得大肠杆菌酶在存在叠氮基团的情况下无需P环显著移动就能容纳。此外,虽然酵母酶使用Arg-15(在大肠杆菌中为甘氨酸)来稳定过渡态,但大肠杆菌似乎使用来自称为Lid区域的Arg-153。因此,AZT-MP与酵母TmpK的结合导致催化残基的移动,而细菌激酶则不然。