Lochner J E, Spangler E, Chavarha M, Jacobs C, McAllister K, Schuttner L C, Scalettar B A
Department of Chemistry, Lewis & Clark College, Portland, Oregon 97219, USA.
Dev Neurobiol. 2008 Sep 1;68(10):1243-56. doi: 10.1002/dneu.20650.
Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are copackaged and cotransported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively copackaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo cotransport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF colocalize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy.
近期数据表明,组织型纤溶酶原激活剂(tPA)通过将纤溶酶原转化为纤溶酶来影响海马体突触的长期可塑性,纤溶酶随后从其前体前脑源性神经营养因子(proBDNF)生成成熟的脑源性神经营养因子(mBDNF)。基于这一假设,我们利用在海马神经元中表达的荧光嵌合体,来阐明:(1)海马神经元分泌纤溶酶原的潜在机制;(2)tPA、纤溶酶原和proBDNF在海马神经元中,尤其是在树突棘内,是否共同包装并共同运输;(3)介导这些神经调节剂运输到释放位点的机制。我们发现,纤溶酶原嵌合体通过致密核心颗粒(DCG)中的海马神经元调节性分泌途径运输,并且tPA、纤溶酶原和proBDNF嵌合体在整个海马神经元的DCG中大量共同包装。我们还发现,80%含有DCG的树突棘在同一个DCG中含有这些神经调节剂的嵌合体。最后,我们首次证明,神经调节剂在快速移动的DCG中沿树突共同运输,这表明神经调节剂可以有效地被招募到活跃的树突棘中。这些结果支持了tPA介导BDNF突触激活的假设,因为它们表明tPA、纤溶酶原和proBDNF在树突棘的DCG中共定位,在那里这些神经调节剂可以进行依赖活性的释放,然后相互作用和/或介导影响突触效能的变化。这些结果还提出了一种可能性,即DCG中神经调节剂释放程度的频率依赖性变化,通过改变对突触效能产生相反作用的两种蛋白质mBDNF和proBDNF的相对比例,影响海马体突触可塑性的方向。