Suppr超能文献

通过单颗粒示踪技术揭示的突触前致密核心颗粒的受限亚微米迁移和长期储存。

Hindered submicron mobility and long-term storage of presynaptic dense-core granules revealed by single-particle tracking.

机构信息

Department of Physics, Lewis and Clark College, Portland, Oregon 97219, USA.

出版信息

Dev Neurobiol. 2012 Sep;72(9):1181-95. doi: 10.1002/dneu.20984. Epub 2012 Jun 21.

Abstract

Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically localized DCGs.

摘要

致密核心颗粒(DCGs)是存在于神经内分泌细胞和神经元中的细胞器,它储存、运输和释放多种重要的肽类和蛋白质。在神经元中,DCG 货物可以包括分泌型神经调质蛋白组织纤溶酶原激活物(tPA)和/或脑源性神经营养因子(BDNF),它们在调节海马体突触效能方面发挥着关键作用。这一功能激发了人们对定位于海马神经元突触接触部位的 DCG 的兴趣,最近的几项研究已经证实,DCG 定位于突触后部位,并从那里进行受调控的胞吐作用。为了补充这方面的工作,我们研究了海马神经元中的定位于突触前的 DCG,它们比突触后类似物理解得要差得多。此外,为了增强相关性,我们通过荧光标记外源性和内源性 tPA 和 BDNF 来可视化 DCGs。我们使用单颗粒追踪技术,确定了超过 150 个定位于突触前的 DCG 的轨迹。这些轨迹表明,突触前小泡中 DCG 的流动性受到高度阻碍,储存时间很长。我们还计算了均方根位移曲线,可以用来阐明运输机制。在较短的时间窗口内,大多数曲线是线性的,表明 DCG 在小泡中的运输主要是由扩散驱动的。其余的曲线随时间呈平台状,这与受亚微米大小的围栏限制的运动一致。这些结果与最近的突触前组织模型以及关于 DCG 货物功能的最新假说有关。结果还提供了到突触前质膜的转运时间的估计值,与从突触定位的 DCG 中测量到的神经营养因子释放开始时间一致。

相似文献

1
4
How neurosecretory vesicles release their cargo.
Neuroscientist. 2006 Apr;12(2):164-76. doi: 10.1177/1073858405284258.
6
Requirements for the identification of dense-core granules.
Trends Cell Biol. 2004 Jan;14(1):13-9. doi: 10.1016/j.tcb.2003.11.006.
7
Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells.
J Biol Chem. 2010 Mar 26;285(13):10030-10043. doi: 10.1074/jbc.M109.064196. Epub 2010 Jan 8.
8
Presynaptic Biogenesis Requires Axonal Transport of Lysosome-Related Vesicles.
Neuron. 2018 Sep 19;99(6):1216-1232.e7. doi: 10.1016/j.neuron.2018.08.004. Epub 2018 Aug 30.
9
Stochastic Subcellular Organization of Dense-Core Vesicles Revealed by Point Pattern Analysis.
Biophys J. 2016 Aug 23;111(4):852-863. doi: 10.1016/j.bpj.2016.07.019.
10
Single-cell characterization of retrograde signaling by brain-derived neurotrophic factor.
J Neurosci. 2006 Dec 27;26(52):13531-6. doi: 10.1523/JNEUROSCI.4576-06.2006.

引用本文的文献

1
Hyperferritinemia as a Clue to Neuroendocrine Carcinoma.
Cureus. 2025 Aug 13;17(8):e90020. doi: 10.7759/cureus.90020. eCollection 2025 Aug.
2
Pathologic Features of Miscellaneous Foregut Malignancies.
Cancer Treat Res. 2024;192:49-66. doi: 10.1007/978-3-031-61238-1_3.
4
Mechanisms Controlling the Expression and Secretion of BDNF.
Biomolecules. 2023 May 2;13(5):789. doi: 10.3390/biom13050789.
5
Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic.
Pharmaceutics. 2023 Mar 24;15(4):1051. doi: 10.3390/pharmaceutics15041051.
6
Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease.
Semin Thromb Hemost. 2022 Apr;48(3):288-300. doi: 10.1055/s-0041-1740265. Epub 2021 Dec 23.
7
Characterization of Tissue Plasminogen Activator Expression and Trafficking in the Adult Murine Brain.
eNeuro. 2018 Aug 6;5(4). doi: 10.1523/ENEURO.0119-18.2018. eCollection 2018 Jul-Aug.
8
Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas.
Neoplasia. 2017 Dec;19(12):991-1002. doi: 10.1016/j.neo.2017.09.002. Epub 2017 Nov 5.
9
Stochastic Subcellular Organization of Dense-Core Vesicles Revealed by Point Pattern Analysis.
Biophys J. 2016 Aug 23;111(4):852-863. doi: 10.1016/j.bpj.2016.07.019.
10
Super-resolution imaging of neuronal dense-core vesicles.
J Vis Exp. 2014 Jul 2(89):51394. doi: 10.3791/51394.

本文引用的文献

1
Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells.
Mol Biol Cell. 2011 Jul 1;22(13):2324-36. doi: 10.1091/mbc.E11-02-0159. Epub 2011 May 5.
2
Chromogranin peptides in brain diseases.
J Neural Transm (Vienna). 2011 May;118(5):727-35. doi: 10.1007/s00702-011-0648-z. Epub 2011 Apr 30.
3
Ultrastructural organization of presynaptic terminals.
Curr Opin Neurobiol. 2011 Apr;21(2):261-8. doi: 10.1016/j.conb.2010.12.003. Epub 2011 Jan 17.
4
The role of myosin V in exocytosis and synaptic plasticity.
J Neurochem. 2011 Jan;116(2):177-91. doi: 10.1111/j.1471-4159.2010.07110.x.
5
Presynaptic BDNF promotes postsynaptic long-term potentiation in the dorsal striatum.
J Neurosci. 2010 Oct 27;30(43):14440-5. doi: 10.1523/JNEUROSCI.3310-10.2010.
6
Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite.
J Neurosci. 2009 Nov 11;29(45):14185-98. doi: 10.1523/JNEUROSCI.1863-09.2009.
7
3D Brownian diffusion of submicron-sized particle clusters.
ACS Nano. 2009 Oct 27;3(10):3326-34. doi: 10.1021/nn900902b.
8
Spatiotemporal control of cell signalling using a light-switchable protein interaction.
Nature. 2009 Oct 15;461(7266):997-1001. doi: 10.1038/nature08446. Epub 2009 Sep 13.
9
Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons.
Neuroscience. 2009 Sep 15;162(4):1001-10. doi: 10.1016/j.neuroscience.2009.05.038. Epub 2009 Jun 2.
10
Control of extracellular cleavage of ProBDNF by high frequency neuronal activity.
Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1267-72. doi: 10.1073/pnas.0807322106. Epub 2009 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验