Hoshino Osamu
Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan.
Network. 2008;19(2):95-117. doi: 10.1080/09548980701840343.
Simulating a neural network model of an early sensory cortical area, we investigated how gamma-aminobutyric acid (GABA) accumulated in extracellular space (ambient GABA), which depends on the synaptic activity of GABAergic interneurons, acts on the GABAa-receptors located on extrasynaptic membrane regions of principal cells (P), feedback inhibitory cells (F) and lateral inhibitory cells (L). The ambient GABA enhanced the selective responsiveness of P-cells to a target feature stimulus, if it acted on the extrasynaptic GABAa-receptors of P-cells. The ambient GABA led to depolarizing P-cells during ongoing (spontaneous) neuronal-activity periods, if it acted on the extrasynaptic GABAa-receptors of F or L cells. This membrane depolarization contributed to establishing an ongoing subthreshold neuronal state, by which the P-cells could respond quickly to the target stimulus. We suggest that the combinatorial inhibition of P, F, and L cells, meditated by extrasynaptic GABAa-receptors recognizing ambient GABA, is crucial for processing the information of relevant sensory features and for establishing an ongoing subthreshold cortical state that prepares as a ready state for subsequent sensory input. A failure in neuronal-activity-dependent regulation of ambient GABA, stemming largely from the depletion of GABA in extracellular space during senescence, may cause the degeneration of intracortical inhibition that leads to cognitive dysfunction in old animals.
通过模拟早期感觉皮层区域的神经网络模型,我们研究了依赖于γ-氨基丁酸(GABA)能中间神经元突触活动而在细胞外空间积累的γ-氨基丁酸(环境GABA)如何作用于位于主细胞(P)、反馈抑制细胞(F)和侧向抑制细胞(L)突触外膜区域的GABAa受体。如果环境GABA作用于P细胞的突触外GABAa受体,它会增强P细胞对目标特征刺激的选择性反应。如果环境GABA作用于F或L细胞的突触外GABAa受体,在持续(自发)神经元活动期间它会导致P细胞去极化。这种膜去极化有助于建立一个持续的阈下神经元状态,通过该状态P细胞能够对目标刺激快速做出反应。我们认为,由识别环境GABA的突触外GABAa受体介导的P、F和L细胞的组合抑制,对于处理相关感觉特征的信息以及建立一个持续的阈下皮层状态至关重要,该状态作为后续感觉输入的准备状态。主要源于衰老过程中细胞外空间GABA耗竭的环境GABA的神经元活动依赖性调节失败,可能导致皮层内抑制的退化,从而导致老年动物的认知功能障碍。