Suppr超能文献

通过阶段性和持续性神经元激活来改变环境 GABA。

Alteration of ambient GABA by phasic and tonic neuronal activation.

机构信息

Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Ibaraki, Japan.

出版信息

Neural Comput. 2010 May;22(5):1358-82. doi: 10.1162/neco.2010.02-09-969.

Abstract

Neurons of primary auditory cortex (AI) emit spikes (action potentials) in two distinct manners, responding to sounds in an onset or a sustained manner. The former AI neurons are called phasic cells and the latter tonic cells. The phasic cells generate spikes for a brief time period (less than hundreds of milliseconds) at the onset of an auditory stimulus (e.g., a tone frequency sound), and the tonic cells continuously generate spikes throughout the stimulation period. Simulating a neural network model of AI, we investigated whether and how the onset discharges influence the sustained discharges that are believed to play a central role in encoding auditory information. Onset discharges, triggered by a phasic input, briefly excited GABAergic interneurons and transiently increased the level of ambient GABA, which was immediately recognized by extrasynaptic GABA(a) receptors and provided inhibitory currents into neurons. The transient alteration of ambient GABA allowed tonic cells to respond selectively to a tonic input. The timing of phasic input relative to a tonic one had a great impact on the responsiveness of tonic cells. We found optimal timing for the best selective responsiveness: phasic input preceding tonic input by several tens of milliseconds. Offset discharges induced by a secondary input to phasic cells, applied at the end of the tonic input period, suddenly terminated the sustained discharges and allowed the network to return rapidly to the ongoing-spontaneous neuronal state. We suggest that the transporter-mediated alteration of ambient GABA, triggered by onset discharges, may improve the response property of AI neurons. Offset discharges may have a role in resetting AI neurons so that they can prepare for the next auditory input.

摘要

初级听觉皮层 (AI) 的神经元以两种不同的方式发射尖峰 (动作电位),以起始或持续的方式对声音做出反应。前者称为相位细胞,后者称为紧张细胞。相位细胞在听觉刺激(例如音调声音)开始时会在短时间内(不到数百毫秒)产生尖峰,而紧张细胞会在整个刺激期间持续产生尖峰。模拟 AI 的神经网络模型,我们研究了起始放电是否以及如何影响持续放电,持续放电被认为在编码听觉信息方面发挥着核心作用。由相位输入触发的起始放电短暂兴奋 GABA 能中间神经元,并瞬时增加周围 GABA 的水平,这立即被 extrasynaptic GABA(a) 受体识别,并向神经元提供抑制电流。周围 GABA 的短暂变化使紧张细胞能够选择性地对紧张输入做出反应。相位输入相对于紧张输入的时间对紧张细胞的反应性有很大影响。我们发现最佳的选择性反应性的最佳时间:相位输入比紧张输入提前几十毫秒。施加在紧张输入期结束时的对相位细胞的二次输入引起的偏移放电突然终止了持续放电,并使网络能够迅速返回到正在进行的自发神经元状态。我们建议,由起始放电触发的转运体介导的周围 GABA 的改变可能会改善 AI 神经元的反应特性。偏移放电可能在重置 AI 神经元方面发挥作用,以便它们可以为下一个听觉输入做好准备。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验