Maiti Nakul C, Jiang Dianlu, Wain Andrew J, Patel Sveti, Dinh Kim L, Zhou Feimeng
Department of Chemistry and Biochemistry, California State University, Los Angeles, California 90032, USA.
J Phys Chem B. 2008 Jul 17;112(28):8406-11. doi: 10.1021/jp802038p. Epub 2008 Jun 21.
Due in large part to the lack of crystal structures of the amyloid-beta (Abeta) peptide and its complexes with Cu(II), Fe(II), and Zn(II), characterization of the metal-Abeta complex has been difficult. In this work, we investigated the complexation of Cu(II) by Abeta through tandem use of fluorescence and electron paramagnetic resonance (EPR) spectroscopies. EPR experiments indicate that Cu(II) bound to Abeta can be reduced to Cu(I) using sodium borohydride and that both Abeta-Cu(II) and Abeta-Cu(I) are chemically stable. Upon reduction of Cu(II) to Cu(I), the Abeta fluorescence, commonly reported to be quenched upon Abeta-Cu(II) complex formation, can be regenerated. The absence of the characteristic tyrosinate peak in the absorption spectra of Abeta-Cu(II) complexes provides evidence that the sole tyrosine residue in Abeta is not one of the four equatorial ligands bound to Cu(II), but remains close to the metal center, and its fluorescence is sensitive to the copper oxidation state and perturbations in the coordination sphere. Further analysis of the quenching and Cu(II) binding behaviors at different Cu(II) concentrations and in the presence of the competing ligand glycine offers evidence supporting the operation of two binding regimes which demonstrate different levels of fluorescence recovery upon addition of the reducing agent. We provide results that suggest the fluorescence quenching is likely caused by charge transfer processes. Thus, by using tyrosine to probe the coordination site, fluorescence spectroscopy provides valuable mechanistic insights into the oxidation state of copper ions bound to Abeta, the binding heterogeneity, and the influence of solution conditions on complex formation.
很大程度上由于β-淀粉样蛋白(Aβ)肽及其与Cu(II)、Fe(II)和Zn(II)形成的复合物缺乏晶体结构,金属-Aβ复合物的表征一直很困难。在这项工作中,我们通过串联使用荧光光谱和电子顺磁共振(EPR)光谱研究了Aβ与Cu(II)的络合作用。EPR实验表明,与Aβ结合的Cu(II)可以用硼氢化钠还原为Cu(I),并且Aβ-Cu(II)和Aβ-Cu(I)在化学上都是稳定的。将Cu(II)还原为Cu(I)后,通常报道在形成Aβ-Cu(II)复合物时会淬灭的Aβ荧光可以再生。Aβ-Cu(II)复合物吸收光谱中没有特征性的酪氨酸盐峰,这表明Aβ中唯一的酪氨酸残基不是与Cu(II)结合的四个赤道配体之一,但仍靠近金属中心,并且其荧光对铜的氧化态和配位球中的扰动敏感。在不同Cu(II)浓度下以及在存在竞争配体甘氨酸的情况下,对淬灭和Cu(II)结合行为的进一步分析提供了证据,支持两种结合模式的存在,这两种模式在加入还原剂后表现出不同程度的荧光恢复。我们提供的结果表明荧光淬灭可能是由电荷转移过程引起的。因此,通过使用酪氨酸探测配位位点,荧光光谱为与Aβ结合的铜离子的氧化态、结合异质性以及溶液条件对复合物形成的影响提供了有价值的机理见解。