Suppr超能文献

生物纳米系统的随机动力学:多尺度分析与特殊系综

Stochastic dynamics of bionanosystems: Multiscale analysis and specialized ensembles.

作者信息

Pankavich S, Miao Y, Ortoleva J, Shreif Z, Ortoleva P

机构信息

Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA.

出版信息

J Chem Phys. 2008 Jun 21;128(23):234908. doi: 10.1063/1.2931572.

Abstract

An approach for simulating bionanosystems such as viruses and ribosomes is presented. This calibration-free approach is based on an all-atom description for bionanosystems, a universal interatomic force field, and a multiscale perspective. The supramillion-atom nature of these bionanosystems prohibits the use of a direct molecular dynamics approach for phenomena such as viral structural transitions or self-assembly that develop over milliseconds or longer. A key element of these multiscale systems is the cross-talk between, and consequent strong coupling of processes over many scales in space and time. Thus, overall nanoscale features of these systems control the relative probability of atomistic fluctuations, while the latter mediate the average forces and diffusion coefficients that induce the dynamics of these nanoscale features. This feedback loop is overlooked in typical coarse-grained methods. We elucidate the role of interscale cross-talk and overcome bionanosystem simulation difficulties with (1) automated construction of order parameters (OPs) describing suprananometer scale structural features, (2) construction of OP-dependent ensembles describing the statistical properties of atomistic variables that ultimately contribute to the entropies driving the dynamics of the OPs, and (3) the derivation of a rigorous equation for the stochastic dynamics of the OPs. As the OPs capture hydrodynamic modes in the host medium, "long-time tails" in the correlation functions yielding the generalized diffusion coefficients do not emerge. Since the atomic-scale features of the system are treated statistically, several ensembles are constructed that reflect various experimental conditions. Attention is paid to the proper use of the Gibbs hypothesized equivalence of long-time and ensemble averages to accommodate the varying experimental conditions. The theory provides a basis for a practical, quantitative bionanosystem modeling approach that preserves the cross-talk between the atomic and nanoscale features. A method for integrating information from nanotechnical experimental data in the derivation of equations of stochastic OP dynamics is also introduced.

摘要

本文提出了一种用于模拟病毒和核糖体等生物纳米系统的方法。这种无需校准的方法基于对生物纳米系统的全原子描述、通用的原子间力场以及多尺度视角。这些生物纳米系统包含超百万个原子,这使得无法使用直接分子动力学方法来研究诸如病毒结构转变或自组装等持续数毫秒或更长时间的现象。这些多尺度系统的一个关键要素是不同尺度之间的相互作用,以及由此导致的在空间和时间上多个尺度过程的强耦合。因此,这些系统的整体纳米尺度特征控制着原子波动的相对概率,而原子波动则介导了诱导这些纳米尺度特征动力学的平均力和扩散系数。这种反馈回路在典型的粗粒度方法中被忽略了。我们通过以下方式阐明尺度间相互作用的作用并克服生物纳米系统模拟困难:(1)自动构建描述超纳米尺度结构特征的序参量(OPs);(2)构建依赖于OPs的系综,以描述原子变量的统计特性,这些原子变量最终对驱动OPs动力学的熵有贡献;(3)推导OPs随机动力学的严格方程。由于OPs捕获了主体介质中的流体动力学模式,因此在产生广义扩散系数的相关函数中不会出现“长时间尾”。由于对系统的原子尺度特征进行了统计处理,因此构建了几个反映不同实验条件的系综。注意正确使用吉布斯假设的长时间平均和系综平均的等效性,以适应不同的实验条件。该理论为一种实用的、定量的生物纳米系统建模方法提供了基础,该方法保留了原子和纳米尺度特征之间的相互作用。还介绍了一种在推导随机OP动力学方程时整合来自纳米技术实验数据信息的方法。

相似文献

3
Multiscale macromolecular simulation: role of evolving ensembles.多尺度大分子模拟:演变集合体的作用。
J Chem Inf Model. 2012 Oct 22;52(10):2638-49. doi: 10.1021/ci3002952. Epub 2012 Sep 28.

引用本文的文献

4
Multiscale macromolecular simulation: role of evolving ensembles.多尺度大分子模拟:演变集合体的作用。
J Chem Inf Model. 2012 Oct 22;52(10):2638-49. doi: 10.1021/ci3002952. Epub 2012 Sep 28.
8
Multiscale simulation of microbe structure and dynamics.微生物结构与动力学的多尺度模拟。
Prog Biophys Mol Biol. 2011 Oct;107(1):200-17. doi: 10.1016/j.pbiomolbio.2011.07.006. Epub 2011 Jul 23.

本文引用的文献

3
Multiscale coarse-graining of monosaccharides.单糖的多尺度粗粒化
J Phys Chem B. 2007 Oct 4;111(39):11566-75. doi: 10.1021/jp0721494. Epub 2007 Sep 13.
4
Coarse-grained peptide modeling using a systematic multiscale approach.使用系统多尺度方法的粗粒度肽建模。
Biophys J. 2007 Jun 15;92(12):4289-303. doi: 10.1529/biophysj.106.094425. Epub 2007 Mar 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验