Department of Chemistry, Center for Cell and Virus Theory, Indiana University, Bloomington, Indiana 47405, USA.
J Chem Phys. 2010 Feb 21;132(7):075102. doi: 10.1063/1.3316793.
Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set of stochastic equations for the order parameters whose dynamics is driven by thermal-average forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other supramillion atom nanosystems. This algorithm allows for sampling of a wide range of configurations without creating an excess of high-energy, improbable ones. It is implemented and used to calculate thermal-average forces. These forces are then used to search the free-energy landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems whose properties are described by the CHARMM or other interatomic force field. Our implementation, denoted SIMNANOWORLD, achieves calibration-free nanosystem modeling. Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall character is provided via predicted values of order parameters. Applications from virology to the computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for nonenveloped viruses are envisioned.
演绎全原子多尺度技术意味着许多纳米系统可以用慢动态序参量来理解,这些序参量与快速波动原子构型的准平衡概率密度共同演变。这种多尺度分析的结果是一组关于序参量的随机方程,其动力学由热平均力驱动。我们提出了一种在病毒和其他超百万原子纳米系统中采样原子构型的有效算法。该算法允许对各种构型进行采样,而不会产生过多的高能、不可能的构型。它被实现并用于计算热平均力。然后,这些力被用于搜索纳米系统的自由能景观以寻找深极小值。该方法应用于豇豆花叶病毒衣壳的热结构。该方法具有广泛的适用性,可应用于其他性质由 CHARMM 或其他原子间力场描述的纳米系统。我们的实现,称为 SIMNANOWORLD,实现了无校准的纳米系统建模。准平衡概率密度保留了基本的原子尺度细节,而序参量的预测值提供了整体特征。预计该方法将应用于病毒学领域,用于设计用于输送治疗剂和非包膜病毒疫苗的纳米胶囊。