Suppr超能文献

一种基于模型的去卷积方法,用于解决扩散加权磁共振成像中的纤维交叉问题。

A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging.

作者信息

Dell'Acqua Flavio, Rizzo Giovanna, Scifo Paola, Clarke Rafael Alonso, Scotti Giuseppe, Fazio Ferruccio

机构信息

University of Milano-Bicocca, Milan, Italy.

出版信息

IEEE Trans Biomed Eng. 2007 Mar;54(3):462-72. doi: 10.1109/TBME.2006.888830.

Abstract

A deconvolution approach is presented to solve fiber crossing in diffusion magnetic resonance imaging. In order to provide a direct physical interpretation of the signal generation process, we started from the classical multicompartment model and rewrote this in terms of a convolution process, identifying a significant scalar parameter alpha to characterize the physical system response. Deconvolution is performed by a modified version of the Richardson-Lucy algorithm. Simulations show the ability of this method to correctly separate fiber crossing, even in the presence of noisy data, with lower signal-to-noise ratio, and imprecision in the impulse response function imposed during deconvolution. The in vivo data confirms the efficacy of this method to resolve fiber crossing in real complex brain structures. These results suggest the usefulness of our approach in fiber tracking or connectivity studies.

摘要

提出了一种去卷积方法来解决扩散磁共振成像中的纤维交叉问题。为了对信号生成过程提供直接的物理解释,我们从经典的多隔室模型出发,并将其改写为卷积过程的形式,确定了一个重要的标量参数α来表征物理系统响应。去卷积通过理查森 - 露西算法的改进版本进行。模拟结果表明,即使存在噪声数据、较低的信噪比以及去卷积过程中施加的脉冲响应函数不精确的情况,该方法仍能够正确分离纤维交叉。体内数据证实了该方法在解析真实复杂脑结构中纤维交叉方面的有效性。这些结果表明我们的方法在纤维追踪或连通性研究中的有用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验