Suppr超能文献

在贝叶斯框架下使用空间模型构建多层3D激光雷达图像

Multilayered 3D Lidar image construction using spatial models in a Bayesian framework.

作者信息

Hernandez-Marin Sergio, Wallace Andrew M, Gibson Gavin J

机构信息

ERP Joint Research Institute Image and Signal Processing, School of Engineering and Physical Sciences, Heriot Watt University, Riccarton, Edinburgh, UK.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2008 Jun;30(6):1028-40. doi: 10.1109/TPAMI.2008.47.

Abstract

Standard 3D imaging systems process only a single return at each pixel from an assumed single opaque surface. However, there are situations when the laser return consists of multiple peaks due to the footprint of the beam impinging on a target with surfaces distributed in depth or with semi-transparent surfaces. If all these returns are processed, a more informative multi-layered 3D image is created. We propose a unified theory of pixel processing for Lidar data using a Bayesian approach that incorporates spatial constraints through a Markov Random Field with a Potts prior model. This allows us to model uncertainty about the underlying spatial process. To palliate some inherent deficiencies of this prior model, we also introduce two proposal distributions, one based on spatial mode jumping, the other on a spatial birth/death process. The different parameters of the several returns are estimated using reversible jump Markov chain Monte Carlo (RJMCMC) techniques in combination with an adaptive strategy of delayed rejection to improve the estimates of the parameters.

摘要

标准的3D成像系统在每个像素处仅处理来自假定的单个不透明表面的单次回波。然而,存在这样的情况,即由于光束的光斑照射到具有深度分布的表面或半透明表面的目标上,激光回波会由多个峰值组成。如果处理所有这些回波,就会创建一个信息更丰富的多层3D图像。我们提出了一种使用贝叶斯方法对激光雷达数据进行像素处理的统一理论,该方法通过具有Potts先验模型的马尔可夫随机场纳入空间约束。这使我们能够对潜在空间过程的不确定性进行建模。为了缓解该先验模型的一些固有缺陷,我们还引入了两种提议分布,一种基于空间模式跳跃,另一种基于空间出生/死亡过程。使用可逆跳跃马尔可夫链蒙特卡罗(RJMCMC)技术结合延迟拒绝的自适应策略来估计多个回波的不同参数,以改进参数估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验