Suppr超能文献

机械诱导的膜穿孔会导致轴突串珠化和局部细胞骨架损伤。

Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage.

作者信息

Kilinc Devrim, Gallo Gianluca, Barbee Kenneth A

机构信息

School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA.

出版信息

Exp Neurol. 2008 Aug;212(2):422-30. doi: 10.1016/j.expneurol.2008.04.025. Epub 2008 May 3.

Abstract

Diffuse axonal injury (DAI), a major component of traumatic brain injury, is a manifestation of microstructural cellular trauma and various ensuing neurochemical reactions that leads to secondary neuronal death. DAI is suggested to result from the initial increase in the membrane permeability caused by the mechanical forces acting on the axons. Permeability increases disturb ion balance and lead to cytoskeletal disruption resulting in the impairment of axonal transport. We present an in vitro model that reproduces important features of in vivo DAI such as membrane permeability changes, focal disruption of microtubules, impaired axonal transport, and focal accumulation of organelles. We induced fluid shear stress injury (FSSI) on cultured primary chick forebrain neurons and characterized the resulting structural and morphological changes. In addition, we tested the effect of Poloxamer 188 (P188), a tri-block co-polymer that is known to promote resealing membrane pores. We found that FSSI induces mechanoporation that leads to axonal bead formation, the "hallmark" morphology of DAI. Beads contained accumulated mitochondria and co-localized with focal microtubule disruptions, also a characteristic of DAI. Post-injury P188 treatment prevented FSSI-induced membrane permeability changes and reduced axonal beading to control levels. These results indicate that acute mechanoporation of axons in response to injury is a necessary condition for subsequent axonal pathology, suggesting that membrane integrity is a potential target for therapeutic interventions. P188 provides neuroprotection via resealing the plasma membrane following injury and prevents focal disruption of microtubules and axonal bead formation.

摘要

弥漫性轴索损伤(DAI)是创伤性脑损伤的主要组成部分,是微观结构细胞创伤以及各种随之而来的神经化学反应的表现,会导致继发性神经元死亡。DAI被认为是由作用于轴突的机械力导致的膜通透性最初增加所引起的。通透性增加会扰乱离子平衡并导致细胞骨架破坏,从而造成轴突运输受损。我们提出了一种体外模型,该模型再现了体内DAI的重要特征,如膜通透性变化、微管的局灶性破坏、轴突运输受损以及细胞器的局灶性聚集。我们对培养的原代鸡前脑神经元施加流体剪切应力损伤(FSSI),并对由此产生的结构和形态变化进行了表征。此外,我们测试了泊洛沙姆188(P188)的效果,P188是一种已知能促进膜孔重新封闭的三嵌段共聚物。我们发现FSSI会诱导机械穿孔,导致轴突珠形成,这是DAI的“标志性”形态。轴突珠包含聚集的线粒体,并与局灶性微管破坏共定位,这也是DAI的一个特征。损伤后用P188处理可防止FSSI诱导的膜通透性变化,并将轴突珠形成减少到对照水平。这些结果表明,轴突对损伤的急性机械穿孔是随后轴突病理变化的必要条件,这表明膜完整性是治疗干预的一个潜在靶点。P188通过在损伤后重新封闭质膜提供神经保护作用,并防止微管的局灶性破坏和轴突珠形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验