Chua Hon Nian, Ning Kang, Sung Wing-Kin, Leong Hon Wai, Wong Limsoon
Graduate School of Integrated Sciences, National University of Singapore, Singapore.
J Bioinform Comput Biol. 2008 Jun;6(3):435-66. doi: 10.1142/s0219720008003497.
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.
蛋白质复合物对于理解细胞组织原理至关重要。随着蛋白质 - 蛋白质相互作用(PPI)网络规模的不断扩大,从这些PPI网络中准确快速地预测蛋白质复合物可为发现新型蛋白质复合物的生物学实验提供指导。然而,从PPI网络中预测蛋白质复合物并非易事,尤其是在PPI网络存在噪声且仍不完整的情况下。在此,我们研究利用二级邻居之间的间接相互作用(二级相互作用)进行蛋白质复合物预测。我们从先前的工作中了解到,不相互作用但共享相互作用伙伴(二级邻居)的蛋白质通常具有共同的生物学功能。我们提出了一种方法,首先使用拓扑权重(FS - 权重)对所有直接和间接相互作用进行加权,该权重可估计功能关联的强度。将低权重的相互作用从网络中去除,同时将高权重的二级相互作用引入相互作用网络。然后可将现有的聚类算法应用于这个修改后的网络。我们还提出了一种新颖的算法,在修改后的网络中搜索团,并使用“部分团合并”方法将团合并形成簇。实验表明:(1)利用间接相互作用和拓扑权重增强蛋白质 - 蛋白质相互作用可用于提高各种现有聚类算法预测簇的精度;(2)我们的复合物发现算法在以这种方式修改的相互作用网络上表现良好。由于除了原始PPI网络外未使用其他信息,我们的方法对于蛋白质复合物预测将非常有用,特别是对于新型蛋白质复合物的预测。