Suppr超能文献

从加权 PPI 网络中去除模块间枢纽发现重叠蛋白复合物。

Discovering overlapped protein complexes from weighted PPI networks by removing inter-module hubs.

机构信息

Department of Electrical and computer Engineering, Isfahan University of Technology, Isfahan, 1983963113, Iran.

School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 193955746, Iran.

出版信息

Sci Rep. 2017 Jun 12;7(1):3247. doi: 10.1038/s41598-017-03268-w.

Abstract

Detecting known protein complexes and predicting undiscovered protein complexes from protein-protein interaction (PPI) networks help us to understand principles of cell organization and its functions. Nevertheless, the discovery of protein complexes based on experiment still needs to be explored. Therefore, computational methods are useful approaches to overcome the experimental limitations. Nevertheless, extraction of protein complexes from PPI network is often nontrivial. Two major constraints are large amount of noise and ignorance of occurrence time of different interactions in PPI network. In this paper, an efficient algorithm, Inter Module Hub Removal Clustering (IMHRC), is developed based on inter-module hub removal in the weighted PPI network which can detect overlapped complexes. By removing some of the inter-module hubs and module hubs, IMHRC eliminates high amount of noise in dataset and implicitly considers different occurrence time of the PPI in network. The performance of the IMHRC was evaluated on several benchmark datasets and results were compared with some of the state-of-the-art models. The protein complexes discovered with the IMHRC method show significantly better agreement with the real complexes than other current methods. Our algorithm provides an accurate and scalable method for detecting and predicting protein complexes from PPI networks.

摘要

从蛋白质-蛋白质相互作用(PPI)网络中检测已知的蛋白质复合物并预测未发现的蛋白质复合物,有助于我们理解细胞组织及其功能的原理。然而,基于实验的蛋白质复合物的发现仍有待探索。因此,计算方法是克服实验局限性的有用方法。然而,从 PPI 网络中提取蛋白质复合物通常并不简单。两个主要的限制是大量的噪声和对 PPI 网络中不同相互作用发生时间的无知。在本文中,我们基于加权 PPI 网络中的模块间枢纽移除开发了一种有效的算法,即模块间枢纽移除聚类(IMHRC),该算法可以检测重叠的复合物。通过移除一些模块间枢纽和模块枢纽,IMHRC 消除了数据集的大量噪声,并隐式地考虑了网络中 PPI 的不同发生时间。我们在几个基准数据集上评估了 IMHRC 的性能,并将结果与一些最先进的模型进行了比较。使用 IMHRC 方法发现的蛋白质复合物与真实复合物的一致性明显优于其他现有方法。我们的算法为从 PPI 网络中检测和预测蛋白质复合物提供了一种准确且可扩展的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e430/5468366/5d8ae394e796/41598_2017_3268_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验